Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks via Adaptive Data Partitioning
暂无分享,去创建一个
Khachik Sargsyan | Habib N. Najm | Bert J. Debusschere | Olivier P. Le Maître | O. L. Maître | H. Najm | B. Debusschere | K. Sargsyan | O. Maître
[1] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[2] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[3] Werner Horsthemke,et al. Noise-induced transitions , 1984 .
[4] Adrian E. Raftery,et al. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .
[5] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[6] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[7] K. Karhunen. Zur Spektraltheorie stochastischer prozesse , 1946 .
[8] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[9] Habib N. Najm,et al. Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..
[10] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[11] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[12] D. Eppstein,et al. Approximation algorithms for geometric problems , 1996 .
[13] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[14] Larry S. Davis,et al. Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[15] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[16] R. Ghanem,et al. Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .
[17] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[18] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[19] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[20] Christian Soize,et al. Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .
[21] O. L. Maître,et al. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .
[22] N. Wiener. The Homogeneous Chaos , 1938 .
[23] K. Burrage,et al. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. , 2008, The Journal of chemical physics.
[24] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[25] L. You,et al. Stochastic vs. deterministic modeling of intracellular viral kinetics. , 2002, Journal of theoretical biology.
[26] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[27] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[28] Brian Munsky,et al. The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks , 2008, IEEE Transactions on Automatic Control.
[29] Roger B. Sidje,et al. Multiscale Modeling of Chemical Kinetics via the Master Equation , 2008, Multiscale Model. Simul..
[30] R. Ghanem,et al. Quantifying uncertainty in chemical systems modeling , 2004 .
[31] Roger G. Ghanem,et al. Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[32] D. Gillespie. A rigorous derivation of the chemical master equation , 1992 .
[33] D. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .
[34] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[35] R. Ghanem. Probabilistic characterization of transport in heterogeneous media , 1998 .
[36] Khachik Sargsyan,et al. Bayesian Inference of Spectral Expansions for Predictability Assessment in Stochastic Reaction Networks , 2009 .
[37] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[38] D. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .
[39] D. Gillespie. Markov Processes: An Introduction for Physical Scientists , 1991 .
[40] F. Schlögl,et al. On thermodynamics near a steady state , 1971 .
[41] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[42] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[43] L. Arnold. Random Dynamical Systems , 2003 .