Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks via Adaptive Data Partitioning

Dynamical analysis tools are well established for deterministic models. However, for many biochemical phenomena in cells the molecule count is low, leading to stochastic behavior that causes deterministic macroscale reaction models to fail. The main mathematical framework representing these phenomena is based on jump Markov processes that model the underlying stochastic reaction network. Conventional dynamical analysis tools do not readily generalize to the stochastic setting due to nondifferentiability and absence of explicit state evolution equations. We developed a reduced order methodology for dynamical analysis that relies on the Karhunen-Loeve decomposition and polynomial chaos expansions. The methodology relies on adaptive data partitioning to obtain an accurate representation of the stochastic process, especially in the case of multimodal behavior. As a result, a mixture model is obtained that represents the reduced order dynamics of the system. The Schlogl model is used as a prototype bistable process that exhibits time scale separation and leads to multimodality in the reduced order model.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[3]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[4]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[5]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[6]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[7]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[8]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[9]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[10]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[11]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[12]  D. Eppstein,et al.  Approximation algorithms for geometric problems , 1996 .

[13]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[14]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[16]  R. Ghanem,et al.  Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .

[17]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[20]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[21]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[22]  N. Wiener The Homogeneous Chaos , 1938 .

[23]  K. Burrage,et al.  Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. , 2008, The Journal of chemical physics.

[24]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[25]  L. You,et al.  Stochastic vs. deterministic modeling of intracellular viral kinetics. , 2002, Journal of theoretical biology.

[26]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[27]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[28]  Brian Munsky,et al.  The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks , 2008, IEEE Transactions on Automatic Control.

[29]  Roger B. Sidje,et al.  Multiscale Modeling of Chemical Kinetics via the Master Equation , 2008, Multiscale Model. Simul..

[30]  R. Ghanem,et al.  Quantifying uncertainty in chemical systems modeling , 2004 .

[31]  Roger G. Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[32]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[33]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[34]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[35]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[36]  Khachik Sargsyan,et al.  Bayesian Inference of Spectral Expansions for Predictability Assessment in Stochastic Reaction Networks , 2009 .

[37]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[38]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[39]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[40]  F. Schlögl,et al.  On thermodynamics near a steady state , 1971 .

[41]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[42]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[43]  L. Arnold Random Dynamical Systems , 2003 .