Evolution of deformation mechanisms of Ti-22.4Nb-0.73Ta-2Zr-1.34O alloy during straining

[1]  Geping Li,et al.  Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy , 2009 .

[2]  M. Jackson,et al.  On the mechanism of superelasticity in Gum metal , 2009 .

[3]  J. Gao,et al.  Analysis of kinking in elastoplastic materials with strain-softening behavior , 2008 .

[4]  M. Jackson,et al.  Determination of (C11-C12) in Ti–36Nb–2Ta–3Zr–0.3O (wt.%) (Gum metal) , 2008 .

[5]  Di Zhang,et al.  Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy , 2008 .

[6]  Y. Murata,et al.  Change in anisotropy of mechanical properties with β-phase stability in high Zr-containing Ti-based alloys , 2008 .

[7]  Q. Yao,et al.  Origin of substantial plastic deformation in Gum Metals , 2008 .

[8]  J. Sun,et al.  Evolution of Microstructure and Texture during Recrystallization of the Cold-Swaged Ti-Nb-Ta-Zr-O Alloy , 2008 .

[9]  Jian Sun,et al.  Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy , 2007 .

[10]  R. Yang,et al.  Ductile titanium alloy with low Poisson's ratio. , 2007, Physical review letters.

[11]  D C Chrzan,et al.  "Ideal" engineering alloys. , 2007, Physical review letters.

[12]  J. Eckert,et al.  Phase stability and its effect on the deformation behavior of Ti–Nb–Ta–In/Cr β alloys , 2006 .

[13]  Shuichi Miyazaki,et al.  Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys , 2006 .

[14]  Ilya A. Ovid'ko,et al.  Nanodisturbances in deformed Gum Metal , 2006 .

[15]  S. Kuramoto,et al.  Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy , 2006 .

[16]  S. Kuramoto,et al.  Effect of Oxygen on Phase Stability and Elastic Deformation Behavior in Gum Metal , 2006 .

[17]  S. Kuramoto,et al.  Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys , 2005 .

[18]  S. Kuramoto,et al.  Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys , 2005 .

[19]  Shuichi Miyazaki,et al.  Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys , 2005 .

[20]  Shujun Li,et al.  Super-elastic titanium alloy with unstable plastic deformation , 2005 .

[21]  Surya R. Kalidindi,et al.  Strain hardening due to deformation twinning in α-titanium : Constitutive relations and crystal-plasticity modeling , 2005 .

[22]  S. Kuramoto,et al.  EBSP Analysis on Microstructure of Gum Metal after Plastic Deformation , 2005 .

[23]  H. Hosoda,et al.  Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys , 2005 .

[24]  M. Niinomi,et al.  Tensile Deformation Behavior of Ti-Nb-Ta-Zr Biomedical Alloys , 2004 .

[25]  S. Kalidindi,et al.  Strain hardening of titanium: role of deformation twinning , 2003 .

[26]  K. T. Ramesh,et al.  Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron , 2003 .

[27]  Taketo Sakuma,et al.  Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism , 2003, Science.

[28]  S. Kalidindi,et al.  Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium , 2002 .

[29]  M. Grujicic,et al.  A study of β → α″ martensitic transformation volume change in TiAlV alloys , 1992 .

[30]  O. Izumi,et al.  Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys , 1987 .

[31]  O. Izumi,et al.  Deformation characteristics in Β phase Ti-Nb alloys , 1985 .

[32]  John J. Jonas,et al.  Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations , 1984 .

[33]  J. Albrecht,et al.  Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al , 1982 .

[34]  O. Izumi,et al.  Deformation of metastable betaTi-15Mo-5Zr alloy single crystals , 1980 .

[35]  C. M. Sellars,et al.  Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation , 1969 .