Dendritic integration in a recurrent network.

Classical nonlinear cable theory is appropriate for the unmyelinated axonal membrane because voltage-dependent ion channels are densly distributed, but dendrites with a sparse density distribution of voltage-dependent ion channels show "weakly" excitable membrane properties. Therefore, a model for "weakly" active dendrites is presented by introducing voltage-dependent ion channels at discrete locations along the dendritic cable. This provides an alternative representation for the investigation of regenerative potentials in dendrites in order to explore how active dendrites influence synaptic integration. As an example, we consider a two-neuron recurrent network of biophysically distinct conductance-based model neurons with discrete clusters of persistent sodium channels. Analytical solutions, expressed in terms of a Volterra series expansion for the voltage in response to a suprathreshold input current at the soma of one neuron, are obtained to investigate dendritic spikes, and the effect of backpropagation on distal dendritic spike-like potentials.

[1]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[2]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[3]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[4]  D. Levine,et al.  Effects of active versus passive dendritic membranes on the transfer properties of a simulated neuron , 1978, Biological Cybernetics.

[5]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Kurogi A model of neural network for spatiotemporal pattern recognition , 2004, Biological Cybernetics.

[7]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[8]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[9]  Roger D. Traub,et al.  6 – Mechanisms Responsible for Epilepsy in Hippocampal Slices Predispose the Brain to Collective Oscillations , 1994 .

[10]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[11]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[12]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[13]  J. Rinzel,et al.  Propagating activity patterns in large-scale inhibitory neuronal networks. , 1998, Science.

[14]  L. Trussell,et al.  A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. , 1994, Journal of neurophysiology.

[15]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[16]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[17]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[18]  Christophe Bernard,et al.  Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations , 2004, Biological Cybernetics.

[19]  M. Migliore Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. , 1996, Biophysical journal.

[20]  R R Poznanski,et al.  Theoretical analysis of the amplification of synaptic potentials by small clusters of persistent sodium channels in dendrites. , 2000, Mathematical biosciences.

[21]  Li I. Zhang,et al.  Selective Presynaptic Propagation of Long-Term Potentiation in Defined Neural Networks , 2000, The Journal of Neuroscience.

[22]  Paul C. Bressloff,et al.  Integro-differential equations and the stability of neural networks with dendritic structure , 1995, Biological Cybernetics.

[23]  B. MacVicar Depolarizing prepotentials are Na+ dependent in CA1 pyramidal neurons , 1985, Brain Research.

[24]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[25]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[26]  Stephen Coombes,et al.  Synchrony in an array of integrate-and-fire neurons with dendritic structure , 1997 .

[27]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[28]  K. N. Leibovic Nervous System Theory: An Introductory Study , 1972 .

[29]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[30]  G. Stuart,et al.  Backpropagation of Physiological Spike Trains in Neocortical Pyramidal Neurons: Implications for Temporal Coding in Dendrites , 2000, The Journal of Neuroscience.

[31]  D. Faber,et al.  Quantal analysis and synaptic efficacy in the CNS , 1991, Trends in Neurosciences.

[32]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. N. Ross,et al.  Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. , 1995, Journal of neurophysiology.

[34]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[35]  R J Dunn,et al.  Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. , 2001, Journal of neurophysiology.

[36]  Terrence J. Sejnowski,et al.  Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models , 1996, Journal of Computational Neuroscience.

[37]  Paul C. Bressloff,et al.  Resonantlike Synchronization and Bursting in a Model of Pulse-Coupled Neurons with Active Dendrites , 1999, Journal of Computational Neuroscience.

[38]  D. Johnston,et al.  Active dendrites reduce location-dependent variability of synaptic input trains. , 1997, Journal of neurophysiology.

[39]  Bressloff New mechanism for neural pattern formation. , 1996, Physical review letters.

[40]  Boris V Safronov,et al.  Spatial distribution of Na+ and K+ channels in spinal dorsal horn neurones: role of the soma, axon and dendrites in spike generation , 1999, Progress in Neurobiology.

[41]  S. Karnup,et al.  Cholinergic excitation of dendrites in neocortical neurons , 1998, Neuroscience.

[42]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[43]  Dendritic spikes versus cable properties. , 1969, Science.

[44]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.

[45]  D. Henze,et al.  Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. , 1998, Journal of Neurophysiology.

[46]  Edmund T. Rolls,et al.  On the Time Required for Recurrent Processing in the Brain , 1996 .

[47]  R. Poznanski Conduction velocity of dendritic potentials in a cultured hippocampal neuron model , 2001 .

[48]  B. Sakmann,et al.  Patch clamp characterization of sodium channels expressed from rat brain cDNA , 1987, European Biophysics Journal.

[49]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[50]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[51]  O Herreras,et al.  Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. , 1990, Journal of neurophysiology.

[52]  Daniel J. Amit,et al.  E ective neurons and attractor neural networks in cortical environment , 1992 .

[53]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[54]  M. D. Goldfinger,et al.  Computation of high safety factor impulse propagation at axonal branch points , 2000, Neuroreport.

[55]  B LIBET,et al.  The behaviour of chromatolysed motoneurones studied by intracellular recording , 1958, The Journal of physiology.

[56]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[57]  N. H. Sabah,et al.  The effect of membrane parameters on the properties of the nerve impulse. , 1972, Biophysical journal.

[58]  R. Poznanski Analysis of a postsynaptic scheme based on a tapering equivalent cable model. , 1990, IMA journal of mathematics applied in medicine and biology.

[59]  N. H. Sabah,et al.  Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. , 1969, Biophysical journal.

[60]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[61]  A. Hodgkin,et al.  The Croonian Lecture - Ionic movements and electrical activity in giant nerve fibres , 1958, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[62]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[63]  Stiliyan Kalitzin,et al.  Coherency and connectivity in oscillating neural networks: linear partialization analysis , 1997, Biological Cybernetics.

[64]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[65]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[66]  P W Gage,et al.  A voltage-dependent persistent sodium current in mammalian hippocampal neurons , 1990, The Journal of general physiology.

[67]  R R Poznanski,et al.  A dendritic cable model for the amplification of synaptic potentials by an ensemble average of persistent sodium channels. , 2000, Mathematical biosciences.

[68]  G. Lord,et al.  Intrinsic modulation of pulse-coupled integrate-and-fire neurons , 1997 .

[69]  J. Rospars,et al.  Coding of stimulus intensity in an olfactory receptor neuron: role of neuron spatial extent and passive dendritic backpropagation of action potentials. , 1996, Bulletin of mathematical biology.

[70]  E. Neher,et al.  Single Na+ channel currents observed in cultured rat muscle cells , 1980, Nature.

[71]  D. Gardner The neurobiology of neural networks , 1993 .

[72]  J. Lambert,et al.  Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. , 1995, The Journal of physiology.

[73]  Clay Armstrong,et al.  Synaptically triggered action potentials in dendrites , 1993, Neuron.

[74]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[75]  P. Fromherz,et al.  Cable Properties of Dendrites in Hippocampal Neurons of the Rat Mapped by a Voltage‐sensitive Dye , 1997, The European journal of neuroscience.

[76]  P. Bressloff,et al.  PHYSICS OF THE EXTENDED NEURON , 1997 .

[77]  H. Bras,et al.  Stochastic Geometry and Electrotonic Architecture of Dendritic Arborization of Brain Stem Motoneuron , 1993, The European journal of neuroscience.

[78]  D. Johnston,et al.  Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. , 1999, Journal of neurophysiology.

[79]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[80]  M. Larkum,et al.  Modeling action potential initiation and back-propagation in dendrites of cultured rat motoneurons. , 1998, Journal of neurophysiology.

[81]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[82]  B W Knight,et al.  On subthreshold solutions of the Hodgkin-Huxley equations. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Boyce E. Griffith,et al.  Recovering Quasi-Active Properties of Dendritic Neurons from Dual Potential Recordings , 2001, Journal of Computational Neuroscience.

[84]  A. Hodgkin The optimum density of sodium channels in an unmyelinated nerve. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  Péter Érdi Structure-Based Modeling of Schemas , 1998, Artif. Intell..

[86]  M. Häusser,et al.  Differential shunting of EPSPs by action potentials. , 2001, Science.

[87]  R. Miftakhov,et al.  Mathematic modelling of the enteric nervous network. 5. Excitation propagation in a planar neural network. , 1995, Medical engineering & physics.

[88]  John H. Byrne,et al.  Mathematical Model of Cellular and Molecular Processes Contributing to Associative and Nonassociative Learning in Aplysia , 1989 .

[89]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[90]  Kohyu Fukunishi,et al.  Dendrite classification in rat hippocampal neurons according to signal propagation properties Observation by multichannel optical recording in cultured neuronal networks , 1998, Experimental Brain Research.

[91]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  P. Bressloff,et al.  Neural pattern formation in networks with dendritic structure , 1998 .

[93]  Wilfrid Rall Perspective on neuron model complexity , 1998 .

[94]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[95]  Yo Horikawa,et al.  Bifurcations in the decremental propagation of a spike train in the Hodgkin-Huxley model of low excitability , 1998, Biological Cybernetics.

[96]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[97]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[98]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[99]  D. Tank,et al.  Action potentials reliably invade axonal arbors of rat neocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Holden,et al.  Ionic channel density of excitable membranes can act as a bifurcation parameter , 1981, Biological cybernetics.

[101]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[102]  François Chapeau-Blondeau,et al.  Synapse Models for Neural Networks: From Ion Channel Kinetics to Multiplicative Coefficient wij , 1995, Neural Computation.

[103]  R. L. Nó,et al.  DECREMENTAL CONDUCTION IN PERIPHERAL NERVE. INTEGRATION OF STIMULI IN THE NEURON. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[104]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[105]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[106]  Nathaniel N. Urban,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb , 2001 .

[107]  K. N. Leibovic,et al.  On Synaptic Transmission, Neural Signals and Psychophysiological Phenomena , 1969 .