Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?

[1]  R. Valiev,et al.  Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel , 2014 .

[2]  R. Valiev,et al.  Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion , 2014 .

[3]  Y. Ivanisenko,et al.  New experimental insight into the mechanisms of nanoplasticity , 2013 .

[4]  D. Raabe,et al.  Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. , 2013, Ultramicroscopy.

[5]  G. Herzer Modern Soft Magnets: Amorphous and Nanocrystalline Materials , 2013 .

[6]  R. Pippan,et al.  Cyclic Deformation Behavior of a 316L Austenitic Stainless Steel Processed by High Pressure Torsion , 2012 .

[7]  R. Averback,et al.  Grain boundary doping strengthens nanocrystalline copper alloys , 2012 .

[8]  R. Pippan,et al.  A comprehensive study on the damage tolerance of ultrafine-grained copper , 2012, Materials science & engineering. A, Structural materials : properties, microstructure and processing.

[9]  S. Ringer,et al.  A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography , 2012, Microscopy and Microanalysis.

[10]  J. Cairney,et al.  Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour , 2012 .

[11]  Christopher A. Schuh,et al.  Mechanically driven grain boundary relaxation: a mechanism for cyclic hardening in nanocrystalline Ni , 2012 .

[12]  R. Averback,et al.  Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping , 2011 .

[13]  B. Boyce,et al.  Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys , 2011 .

[14]  R. Pippan,et al.  Fracture toughness evaluation of ultrafine-grained nickel , 2011 .

[15]  Zaoli Zhang,et al.  Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion , 2011 .

[16]  R. Valiev,et al.  On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation , 2010, 1010.4644.

[17]  Heinz Werner Höppel,et al.  Cyclic deformation and fatigue properties of very fine-grained metals and alloys , 2010 .

[18]  T. Fujita,et al.  Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni , 2010 .

[19]  B. Gludovatz,et al.  Technical parameters affecting grain refinement by high pressure torsion , 2009 .

[20]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[21]  R. Scattergood,et al.  Stabilization of nanocrystalline grain sizes by solute additions , 2008, Journal of Materials Science.

[22]  S. Vogel,et al.  Effect of solute segregation on the strength of nanocrystalline alloys : Inverse Hall-Petch relation , 2007 .

[23]  Robert J. Asaro,et al.  Toward a quantitative understanding of mechanical behavior of nanocrystalline metals , 2007 .

[24]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[25]  E. Ma,et al.  Less is more , 2006, Nature materials.

[26]  Xiaoxu Huang,et al.  Hardening by Annealing and Softening by Deformation in Nanostructured Metals , 2006, Science.

[27]  H. V. Swygenhoven,et al.  Nucleation and propagation of dislocations in nanocrystalline fcc metals , 2006 .

[28]  S. Suresh,et al.  Cyclic strain hardening of nanocrystalline nickel , 2006 .

[29]  T. Nieh,et al.  Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni , 2004 .

[30]  H. V. Swygenhoven,et al.  On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation , 2002 .

[31]  R. Kirchheim Grain coarsening inhibited by solute segregation , 2002 .

[32]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[33]  E. Arzt,et al.  Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders , 1997 .

[34]  B. Krakauer,et al.  Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. , 1993, Physical review. B, Condensed matter.