Design and Simulation of GaSb/InAs 2D Transmission-Enhanced Tunneling FETs

We describe the design of double-gate InAs/GaSb tunneling field-effect transistors (TFETs) using GaSb electron wave reflector(s) in the InAs channel. The reflections from the source p-n junction and from the reflector(s) add destructively, causing the net transmission to approach unity at certain energies. The energy range of transmission enhancement can be broadened by the appropriate placement of multiple barriers. With 10-3 A/m OFF-current (IOFF) and a 0.3 V power supply, the subthreshold swing is improved from 14.4 to 4.6 mV/decade and the ON-current (ION) is improved from 35 to 96 A/m, compared with a conventional GaSb/InAs TFET.

[1]  M. Rezwan Khan,et al.  Transmission line analogy of resonance tunneling phenomena: the generalized impedance concept , 1988 .

[2]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[3]  O. Vanbésien,et al.  Maximally flat transmission windows in finite superlattices , 1992 .

[4]  Fabio Beltram,et al.  Empirical spds^* tight-binding calculation for cubic semiconductors : general method and material parameters , 1998 .

[5]  T. Boykin,et al.  Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory , 2002 .

[6]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[7]  Qin Zhang,et al.  Low-subthreshold-swing tunnel transistors , 2006, IEEE Electron Device Letters.

[8]  Hsing-Huang Tseng,et al.  Low-voltage green transistor using ultra shallow junction and hetero-tunneling , 2008, Extended Abstracts - 2008 8th International Workshop on Junction Technology (IWJT '08).

[9]  M. Luisier,et al.  Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness , 2009 .

[10]  M. Lundstrom,et al.  Performance Comparison Between p-i-n Tunneling Transistors and Conventional MOSFETs , 2008, IEEE Transactions on Electron Devices.

[11]  G. Klimeck,et al.  Atomistic Full-Band Design Study of InAs Band-to-Band Tunneling Field-Effect Transistors , 2009, IEEE Electron Device Letters.

[12]  W. Haensch,et al.  On the Possibility of Obtaining MOSFET-Like Performance and Sub-60-mV/dec Swing in 1-D Broken-Gap Tunnel Transistors , 2010, IEEE Transactions on Electron Devices.

[13]  M. Luisier,et al.  Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling , 2010 .

[14]  Paul M. Solomon,et al.  In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.

[15]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[16]  I. Young,et al.  Heterojunction TFET Scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length , 2013, 2013 IEEE International Electron Devices Meeting.

[17]  G. Klimeck,et al.  Efficient and realistic device modeling from atomic detail to the nanoscale , 2013, 1310.4805.

[18]  Dmitri E. Nikonov,et al.  Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at Lg=13nm, including P-TFET and variation considerations , 2013, 2013 IEEE International Electron Devices Meeting.

[19]  Transistors for VLSI, for wireless: A view forwards through fog , 2015, 2015 73rd Annual Device Research Conference (DRC).