Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations

Two alternating direction implicit difference schemes are established for solving a class of two-dimensional time distributed-order wave equations. The schemes are proved to be unconditionally stable and convergent in the maximum norm with the convergence orders $$O(\tau ^2+h_1^2+h_2^2+\Delta \gamma ^2)$$O(τ2+h12+h22+Δγ2) and $$O(\tau ^2+h_1^4+h_2^4+\Delta \gamma ^4),$$O(τ2+h14+h24+Δγ4), respectively, where $$\tau , h_i\; (i=1,2)$$τ,hi(i=1,2) and $$\Delta \gamma $$Δγ are the step sizes in time, space and distributed order. Also, several numerical experiments are carried out to validate the theoretical results.

[1]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[2]  R. Gorenflo,et al.  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  Fawang Liu,et al.  A numerical investigation of the time distributed-order diffusion model , 2014 .

[5]  Zhi-zhong Sun,et al.  Two unconditionally stable and convergent difference schemes with the extrapolation method for the one‐dimensional distributed‐order differential equations , 2016 .

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[7]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[8]  Fawang Liu,et al.  Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains , 2015 .

[9]  Neville J. Ford,et al.  An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time , 2015 .

[10]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[11]  Zhi-Zhong Sun,et al.  Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations , 2015, Comput. Math. Appl..

[12]  Zhi-Zhong Sun,et al.  Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations , 2016, J. Sci. Comput..

[13]  Zhi-Zhong Sun,et al.  Some high-order difference schemes for the distributed-order differential equations , 2015, J. Comput. Phys..

[14]  A. Samarskii The Theory of Difference Schemes , 2001 .

[15]  M. L. Morgado,et al.  Numerical approximation of distributed order reaction-diffusion equations , 2015, J. Comput. Appl. Math..

[16]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Anatoly A. Alikhanov,et al.  Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation , 2013, Appl. Math. Comput..

[18]  R. Gorenflo,et al.  Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .

[19]  M. Meerschaert,et al.  Stochastic model for ultraslow diffusion , 2006 .

[20]  Masahiro Yamamoto,et al.  Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations , 2014 .

[21]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[22]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[23]  Fawang Liu,et al.  Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains , 2015, J. Comput. Phys..

[24]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.