Algorithms and complexity results for graph-based pursuit evasion

We study the classical edge-searching pursuit-evasion problem where a number of pursuers have to clear a given graph of fast-moving evaders despite poor visibility, for example, where robots search a cave system to ensure that no terrorists are hiding in it. We study when polynomial-time algorithms exist to determine how many robots are needed to clear a given graph (minimum robot problem) and how a given number of robots should move on the graph to clear it with either a minimum sum of their travel distances (minimum distance problem) or minimum task-completion time (minimum time problem). The robots cannot clear a graph if the vertex connectivity of some part of the graph exceeds the number of robots. Researchers therefore focus on graphs whose subgraphs can always be cut at a limited number of vertices, that is, graphs of low treewidth, typically trees. We describe an optimal polynomial-time algorithm, called CLEARTHETREE, that is shorter and algorithmically simpler than the state-of-the-art algorithm for the minimum robot problem on unit-width unit-length trees. We then generalize prior research to both unit-width arbitrary-length and unit-length arbitrary-width graphs and derive both algorithms and time complexity results for a variety of graph topologies. Pursuit-evasion problems on the former graphs are generally simpler than pursuit-evasion problems on the latter graphs. For example, the minimum robot and distance problems are solvable in polynomial time on unit-width arbitrary-length trees but NP-hard on unit-length arbitrary-width trees.

[1]  Dimitrios M. Thilikos,et al.  Algorithms and obstructions for linear-width and related search parameters , 2000, Discret. Appl. Math..

[2]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[3]  Dimitrios M. Thilikos,et al.  An annotated bibliography on guaranteed graph searching , 2008, Theor. Comput. Sci..

[4]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..

[5]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[6]  Acm Press,et al.  Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems , 2002 .

[7]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[8]  Sebastian Thrun,et al.  Visibility-based Pursuit-evasion with Limited Field of View , 2004, Int. J. Robotics Res..

[9]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  D. R. Lick,et al.  Theory and Applications of Graphs , 1978 .

[11]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  Sarit Kraus,et al.  Deployed ARMOR protection: the application of a game theoretic model for security at the Los Angeles International Airport , 2008, AAMAS 2008.

[13]  Stefano Carpin,et al.  Extracting surveillance graphs from robot maps , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Konstantin Skodinis Computing Optimal Linear Layouts of Trees in Linear Time , 2000, ESA.

[15]  Giora Slutzki,et al.  Pursuit-evasion using beam detection , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Sarit Kraus,et al.  The impact of adversarial knowledge on adversarial planning in perimeter patrol , 2008, AAMAS.

[17]  Geoffrey A. Hollinger,et al.  A graph search algorithm for indoor pursuit/evasion , 2009, Math. Comput. Model..

[18]  Katia P. Sycara,et al.  Pursuit-evasion in 2.5d based on team-visibility , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[20]  Robert Warren,et al.  Lower bounds on the pathwidth of some grid-like graphs , 2008, Discret. Appl. Math..

[21]  Stefano Carpin,et al.  Multi-robot surveillance: An improved algorithm for the GRAPH-CLEAR problem , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[23]  Lali Barrière,et al.  Capture of an intruder by mobile agents , 2002, SPAA '02.

[24]  Sven Koenig,et al.  Algorithms and Complexity Results for Pursuit-Evasion Problems , 2009, IJCAI.

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  Humbert Fiorino,et al.  Coordinated exploration of unknown labyrinthine environments applied to the pursuit evasion problem , 2005, AAMAS '05.

[27]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[28]  Stefano Carpin,et al.  Pursuit-Evasion on Trees by Robot Teams , 2010, IEEE Transactions on Robotics.

[29]  Dimitrios M. Thilikos,et al.  Computing Small Search Numbers in Linear Time , 2004, IWPEC.

[30]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[31]  Jens Gustedt,et al.  On the Pathwidth of Chordal Graphs , 1993, Discret. Appl. Math..

[32]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[33]  Katia P. Sycara,et al.  Computing and executing strategies for moving target search , 2011, 2011 IEEE International Conference on Robotics and Automation.

[34]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[35]  Sarit Kraus,et al.  Multi-robot perimeter patrol in adversarial settings , 2008, 2008 IEEE International Conference on Robotics and Automation.

[36]  Geoffrey A. Hollinger,et al.  Improving the Efficiency of Clearing with Multi-agent Teams , 2010, Int. J. Robotics Res..

[37]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[38]  Andreas Kolling,et al.  Multi-robot pursuit-evasion , 2009 .

[39]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..

[40]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[41]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[42]  Geoffrey A. Hollinger,et al.  Search in the Physical World , 2010 .

[43]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..