Confinement Increases the Lifetimes of Hydroxyapatite Precursors

The mineral component of bone is a carbonated, nonstoichiometric hydroxyapatite (calcium phosphate) that forms in nanometer confinement within collagen fibrils, the principal organic constituent of bone. We here employ a model system to study the effects of confinement on hydroxyapatite precipitation from solution under physiological conditions. In common with earlier studies of calcium carbonate and calcium sulfate precipitation, we find that confinement significantly prolongs the lifetime of metastable phases, here amorphous calcium phosphate (ACP) and octacalcium phosphate (OCP). The effect occurs at surprisingly large separations of up to 1 μm, and at 0.2 μm the lifetime of ACP is extended by at least an order of magnitude. The soluble additive poly(aspartic acid), which in bulk stabilizes ACP, appears to act synergistically with confinement to give a greatly enhanced stability of ACP. The reason for the extended lifetime appears to be different from that found with CaCO3 and CaSO4, and underscores bo...

[1]  P. Asanithi Surface porosity and roughness of micrographite film for nucleation of hydroxyapatite. , 2014, Journal of biomedical materials research. Part A.

[2]  Michael L. Whittaker,et al.  Controlling nucleation in giant liposomes. , 2014, Chemical communications.

[3]  H. Christenson,et al.  Dehydration and crystallization of amorphous calcium carbonate in solution and in air , 2014, Nature Communications.

[4]  N. Candoni,et al.  Transient Calcium Carbonate Hexahydrate (Ikaite) Nucleated and Stabilized in Confined Nano- and Picovolumes , 2014 .

[5]  H. Christenson,et al.  Confinement Leads to Control over Calcium Sulfate Polymorph , 2013 .

[6]  E. Beniash,et al.  The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement. , 2013, Journal of materials chemistry. B.

[7]  E. Beniash,et al.  Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. , 2013, Chemistry.

[8]  F. Meldrum,et al.  Freeze-drying yields stable and pure amorphous calcium carbonate (ACC). , 2013, Chemical communications.

[9]  M. Ward,et al.  Stereochemical control of polymorph transitions in nanoscale reactors. , 2013, Journal of the American Chemical Society.

[10]  F. Meldrum,et al.  Additives stabilize calcium sulfate hemihydrate (bassanite) in solution , 2012 .

[11]  Yan Wang,et al.  The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. , 2012, Nature materials.

[12]  J. García‐Ruiz,et al.  The Role and Implications of Bassanite as a Stable Precursor Phase to Gypsum Precipitation , 2012, Science.

[13]  H. Christenson,et al.  A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. , 2012, Chemical communications.

[14]  H. Christenson,et al.  Topographical Control of Crystal Nucleation , 2012 .

[15]  H. Christenson,et al.  Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate. , 2011, Angewandte Chemie.

[16]  Ryan E. Brock,et al.  In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes , 2011 .

[17]  S. Evans,et al.  Early stages of crystallization of calcium carbonate revealed in picoliter droplets. , 2011, Journal of the American Chemical Society.

[18]  P. Hilbers,et al.  The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. , 2010, Nature materials.

[19]  Sergey V Dorozhkin Amorphous calcium (ortho)phosphates. , 2010, Acta biomaterialia.

[20]  H. Christenson,et al.  Amorphous Calcium Carbonate is Stabilized in Confinement , 2010 .

[21]  S. Weiner,et al.  Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays , 2010, Proceedings of the National Academy of Sciences.

[22]  F. Meldrum,et al.  Controlling mineral morphologies and structures in biological and synthetic systems. , 2008, Chemical reviews.

[23]  Samuel I Stupp,et al.  Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. , 2008, Chemical reviews.

[24]  G. H. Nancollas,et al.  Calcium orthophosphates: crystallization and dissolution. , 2008, Chemical reviews.

[25]  S. Weiner,et al.  Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase , 2008, Proceedings of the National Academy of Sciences.

[26]  K. Landfester,et al.  Biomimetic Hydroxyapatite Crystallization in Gelatin Nanoparticles Synthesized Using a Miniemulsion Process , 2008 .

[27]  E. Beniash,et al.  Bio-inspired Synthesis of Mineralized Collagen Fibrils. , 2008, Crystal growth & design.

[28]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[29]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[30]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[31]  M. Beiner,et al.  Manipulating the crystalline state of pharmaceuticals by nanoconfinement. , 2007, Nano letters.

[32]  F. Meldrum,et al.  Designer Crystals: Single Crystals with Complex Morphologies , 2007 .

[33]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[34]  Nicole J. Crane,et al.  Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. , 2006, Bone.

[35]  S. Weiner Transient precursor strategy in mineral formation of bone. , 2006, Bone.

[36]  F. Meldrum,et al.  Macroporous inorganic solids from a biomineral template , 2006 .

[37]  T. Irving,et al.  Microfibrillar structure of type I collagen in situ. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Mou,et al.  Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. , 2006, Journal of the American Chemical Society.

[39]  F. Meldrum,et al.  Growth of single crystals in structured templates , 2006 .

[40]  Hector F Rios,et al.  DMP1 Depletion Decreases Bone Mineralization In Vivo: An FTIR Imaging Analysis , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[41]  A. Boskey,et al.  Importance of Phosphorylation for Osteopontin Regulation of Biomineralization , 2005, Calcified Tissue International.

[42]  A. Boskey,et al.  Diffusion Systems for Evaluation of Biomineralization , 2004, Calcified Tissue International.

[43]  D. Kile,et al.  On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion , 2003 .

[44]  S. Koutsopoulos,et al.  Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. , 2002, Journal of biomedical materials research.

[45]  A. Boskey,et al.  Osteopontin Deficiency Increases Mineral Content and Mineral Crystallinity in Mouse Bone , 2002, Calcified Tissue International.

[46]  A. Boskey,et al.  Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. , 1998, Bone.

[47]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[48]  H. Christenson Phase behaviour in slits—when tight cracks stay wet , 1997 .

[49]  P. Hauschka,et al.  Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. , 1996, The Biochemical journal.

[50]  Lobry,et al.  Diffusion of Brownian particles trapped between two walls: Theory and dynamic-light-scattering measurements. , 1996, Physical review. B, Condensed matter.

[51]  B F McEwen,et al.  Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography , 1996, Microscopy research and technique.

[52]  S. Weiner,et al.  Bone structure: from ångstroms to microns , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  S. Doty,et al.  Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. , 1990, Bone and mineral.

[54]  S. Weiner,et al.  Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Boskey,et al.  Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion , 1973 .

[56]  E. Eanes,et al.  An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite , 1973, Calcified Tissue Research.

[57]  D. Taves,et al.  Similarity of Octacalcium Phosphate and Hydroxyapatite Structures , 1963, Nature.

[58]  E. Beniash Biominerals--hierarchical nanocomposites: the example of bone. , 2011, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[59]  L. Brečević,et al.  Precipitation of calcium phosphates from electrolyte solutions , 2005, Calcified Tissue Research.

[60]  J. Featherstone,et al.  The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study. , 1986, Ultramicroscopy.