Robust laser scan matching in dynamic environments

This paper presents a robust laser scan matching algorithm in dynamic environments. Scan matching is thought to be an essential function for mapping and localization of mobile robots. Our method is based on the RANdom Sample and Consensus (RANSAC) algorithm known for its good robust parameter estimation of the model parameters. Different from the existing scan matching methods for mobile robots, we only use the raw data of laser scanning without odometer information to find the transformation between two given laser data sets. Our method does not require any feature extraction and also need not initial estimation to reach global optimum. We demonstrate the practical usability of the proposed approach through Experiment.

[1]  Wolfram Burgard,et al.  Mobile robot mapping in populated environments , 2003, Adv. Robotics.

[2]  J. Katupitiya,et al.  Laser scan matching for measurement update in a particle filter , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[3]  Lindsay Kleeman,et al.  Laser scan matching in polar coordinates with application to SLAM , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[6]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[7]  Masahiro Tomono,et al.  A scan matching method using Euclidean invariant signature for global localization and map building , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[9]  A.-J. Baerveldt,et al.  Localization in changing environments by matching laser range scans , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[10]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[11]  Yi-Ping Hung,et al.  RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[13]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[14]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  David Fofi,et al.  A review of recent range image registration methods with accuracy evaluation , 2007, Image Vis. Comput..

[16]  Gerhard Weiss,et al.  A map based on laserscans without geometric interpretation , 1999 .

[17]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[18]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Florent Lamiraux,et al.  Metric-based iterative closest point scan matching for sensor displacement estimation , 2006, IEEE Transactions on Robotics.

[20]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[21]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.