Large contribution of natural aerosols to uncertainty in indirect forcing

[1]  P. Chuang,et al.  What controls drizzle initiation? Insights from a comparison of large-eddy simulations with observations , 2014 .

[2]  G. Mann,et al.  The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei , 2013 .

[3]  G. Mann,et al.  Natural aerosol direct and indirect radiative effects , 2013 .

[4]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[5]  E. Gryspeerdt Aerosol-cloud-precipitation interactions , 2013 .

[6]  G. Mann,et al.  A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number , 2012 .

[7]  Kenneth S. Carslaw,et al.  Mapping the uncertainty in global CCN using emulation , 2012 .

[8]  O. Boucher,et al.  Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions , 2012 .

[9]  G. Mann,et al.  Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model , 2012 .

[10]  G. Mann,et al.  Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate , 2012 .

[11]  Johannes Quaas,et al.  Estimates of aerosol radiative forcing from the MACC re-analysis , 2012 .

[12]  J. Penner,et al.  Consistent estimates from satellites and models for the first aerosol indirect forcing , 2012 .

[13]  L. Lee,et al.  Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model , 2012 .

[14]  O. Boucher,et al.  The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol , 2012 .

[15]  G. Mann,et al.  Aerosol mass spectrometer constraint on the global secondary organic aerosol budget , 2011 .

[16]  C. O'Dowd,et al.  Primary versus secondary contributions to particle number concentrations in the European boundary layer , 2011 .

[17]  Margaret Barh,et al.  Methodology and Application , 2011 .

[18]  G. Mann,et al.  Excess mortality in Europe following a future Laki-style Icelandic eruption , 2011, Proceedings of the National Academy of Sciences.

[19]  P. Forster,et al.  Global cloud condensation nuclei influenced by carbonaceous combustion aerosol , 2011 .

[20]  J. Pierce,et al.  Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology , 2011 .

[21]  J. Penner,et al.  Satellite methods underestimate indirect climate forcing by aerosols , 2011, Proceedings of the National Academy of Sciences.

[22]  U. Lohmann,et al.  Impact of parametric uncertainties on the present-day climate and on the anthropogenic aerosol effect , 2010 .

[23]  James C McWilliams,et al.  Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.

[24]  F. Yu,et al.  Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations , 2010 .

[25]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[26]  A. Nenes,et al.  Characteristic updrafts for computing distribution‐averaged cloud droplet number and stratocumulus cloud properties , 2010 .

[27]  G. Mann,et al.  Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide , 2010 .

[28]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[29]  G. Mann,et al.  Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation , 2009 .

[30]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[31]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[32]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[33]  G. Mann,et al.  The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm , 2009 .

[34]  G. Mann,et al.  Variable CCN formation potential of regional sulfur emissions , 2009 .

[35]  Hongli Jiang,et al.  The Influence of Entrainment and Mixing Assumption on Aerosol–Cloud Interactions in Marine Stratocumulus , 2009 .

[36]  Andrew Gettelman,et al.  Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect , 2009 .

[37]  G. Mann,et al.  Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study , 2008 .

[38]  Meinrat O. Andreae,et al.  Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols , 2008 .

[39]  M. Andreae Aerosols Before Pollution , 2007, Science.

[40]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[41]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[42]  M. Chipperfield,et al.  New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments , 2006 .

[43]  M. Chipperfield,et al.  A three‐dimensional model study of the effect of new temperature‐dependent quantum yields for acetone photolysis , 2005 .

[44]  U. Lohmann,et al.  Importance of vertical velocity variations in the cloud droplet nucleation process of marine stratus clouds , 2005 .

[45]  John H. Seinfeld,et al.  Study of the Aerosol Indirect Effect by Large-Eddy Simulation of Marine Stratocumulus , 2005 .

[46]  J. Penner,et al.  Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols , 2005 .

[47]  Martyn P. Chipperfield,et al.  A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties , 2005 .

[48]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[49]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[50]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[51]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[52]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[53]  Q. Fu,et al.  Clouds and radiation , 2004 .

[54]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[55]  J. Randerson,et al.  Carbon emissions from fires in tropical and subtropical ecosystems , 2003 .

[56]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[57]  K. Hirsch,et al.  Large forest fires in Canada, 1959–1997 , 2002 .

[58]  J. Wilson,et al.  A modeling study of global mixed aerosol fields , 2001 .

[59]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[60]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[61]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[62]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[63]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[64]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[65]  Menner A. Tatang,et al.  Uncertainty analysis of indirect radiative forcing by anthropogenic sulfate aerosols , 1997 .

[66]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[67]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[68]  S. Twomey,et al.  Aerosols, clouds and radiation , 1991 .

[69]  Robert C. Wolpert,et al.  A Review of the , 1985 .