Hierarchical error processing: Different errors, different systems

[1]  Robert Sessions Woodworth,et al.  THE ACCURACY OF VOLUNTARY MOVEMENT , 1899 .

[2]  E. John,et al.  Evoked-Potential Correlates of Stimulus Uncertainty , 1965, Science.

[3]  E. Donchin,et al.  On quantifying surprise: the variation of event-related potentials with subjective probability. , 1977, Psychophysiology.

[4]  F. Bloom,et al.  Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  E Donchin,et al.  A new method for off-line removal of ocular artifact. , 1983, Electroencephalography and clinical neurophysiology.

[7]  Floyd E. Bloom,et al.  Anatomy and physiology of locus coeruleus neurons: functional implications , 1984 .

[8]  C. Prablanc,et al.  Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement , 1986, Nature.

[9]  E. Donchin,et al.  Is the P300 component a manifestation of context updating? , 1988, Behavioral and Brain Sciences.

[10]  M. Jeannerod The neural and behavioural organization of goal-directed movements , 1990, Psychological Medicine.

[11]  R. Knight,et al.  Contributions of temporal-parietal junction to the human auditory P3 , 1989, Brain Research.

[12]  G. Dunteman Principal Components Analysis , 1989 .

[13]  Steven M. Finbeiner The Neural and Behavioral Organization of Goal-Directed Movements , 1989, The Yale Journal of Biology and Medicine.

[14]  I. Kiss,et al.  A parieto-occipital generator for P300: evidence from human intracranial recordings. , 1989, The International journal of neuroscience.

[15]  E. Halgren,et al.  The intracranial topography of the P3 event-related potential elicited during auditory oddball. , 1990, Electroencephalography and clinical neurophysiology.

[16]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[17]  S. Yamaguchi,et al.  Anterior and posterior association cortex contributions to the somatosensory P300 , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J. Hohnsbein,et al.  Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. , 1991, Electroencephalography and clinical neurophysiology.

[19]  R. Knight,et al.  Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation. , 1992, Electroencephalography and clinical neurophysiology.

[20]  M. Goodale,et al.  Visual pathways to perception and action. , 1993, Progress in brain research.

[21]  D. Elliott,et al.  Visual regulation of manual aiming , 1993 .

[22]  M. Goodale,et al.  Chapter 28 Visual pathways to perception and action , 1993 .

[23]  D. Meyer,et al.  A Neural System for Error Detection and Compensation , 1993 .

[24]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[25]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  R. Verleger,et al.  Reduction of P3b in patients with temporo-parietal lesions. , 1994, Brain research. Cognitive brain research.

[27]  M. Molnár,et al.  On the origin of the P3 event-related potential component. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[28]  E. Halgren,et al.  Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. , 1995, Electroencephalography and clinical neurophysiology.

[29]  J Paillard,et al.  Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. , 1996, Canadian journal of physiology and pharmacology.

[30]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[31]  J. Ford,et al.  Combined event‐related fMRI and EEG evidence for temporal—parietal cortex activation during target detection , 1997, Neuroreport.

[32]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[33]  C. Braun,et al.  Event-Related Brain Potentials Following Incorrect Feedback in a Time-Estimation Task: Evidence for a Generic Neural System for Error Detection , 1997, Journal of Cognitive Neuroscience.

[34]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[35]  William J. Ray,et al.  Movement-related potentials with reference to isometric force output in discrete and repetitive tasks , 1998, Experimental Brain Research.

[36]  S. Jackson,et al.  The selection and suppression of action: ERP correlates of executive control in humans. , 1999, Neuroreport.

[37]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[38]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[39]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[40]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[41]  Scott T. Grafton,et al.  Forward modeling allows feedback control for fast reaching movements , 2000, Trends in Cognitive Sciences.

[42]  Scott T. Grafton,et al.  Functional Anatomy of Nonvisual Feedback Loops during Reaching: A Positron Emission Tomography Study , 2001, The Journal of Neuroscience.

[43]  D. Wolpert,et al.  The cerebellum is involved in predicting the sensory consequences of action , 1999, Neuroreport.

[44]  R. Miall,et al.  The cerebellum coordinates eye and hand tracking movements , 2001, Nature Neuroscience.

[45]  U Hegerl,et al.  Event-related potentials: Do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? , 2001 .

[46]  E. Donchin,et al.  Spatiotemporal analysis of the late ERP responses to deviant stimuli. , 2001, Psychophysiology.

[47]  Kenji Doya,et al.  Neural mechanisms of learning and control , 2001 .

[48]  Scott T. Grafton,et al.  A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements , 2002, Neuropsychologia.

[49]  Kae Nakamura,et al.  Central mechanisms of motor skill learning , 2002, Current Opinion in Neurobiology.

[50]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[51]  Markus Kiefer,et al.  Human anterior cingulate cortex is activated by negative feedback: evidence from event-related potentials in a guessing task , 2002, Neuroscience Letters.

[52]  E. Donchin,et al.  Localization of the event-related potential novelty response as defined by principal components analysis. , 2003, Brain research. Cognitive brain research.

[53]  Gavin P. Lawrence,et al.  Online versus offline processing of visual feedback in the control of movement amplitude. , 2003, Acta psychologica.

[54]  T. Kumada,et al.  Attending to a location in three-dimensional space modulates early ERPs. , 2003, Brain research. Cognitive brain research.

[55]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[56]  Paula Pazo-Álvarez,et al.  Effects of stimulus location on automatic detection of changes in motion direction in the human brain , 2004, Neuroscience Letters.

[57]  Clay B. Holroyd,et al.  Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals , 2004, Nature Neuroscience.

[58]  Matthew Heath,et al.  Background visual cues and memory-guided reaching. , 2004, Human movement science.

[59]  Jonathan D. Cohen,et al.  Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a Forced-Choice Task , 2004, The Journal of Neuroscience.

[60]  Gavin P. Lawrence,et al.  The utilization of visual feedback from peripheral and central vision in the control of direction , 2004, Experimental Brain Research.

[61]  S. Sara,et al.  Reward expectation, orientation of attention and locus coeruleus‐medial frontal cortex interplay during learning , 2004, The European journal of neuroscience.

[62]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[63]  G. Aston-Jones,et al.  Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. , 2004, Journal of neurophysiology.

[64]  E. Donchin,et al.  Parsing the late positive complex: mental chronometry and the ERP components that inhabit the neighborhood of the P300. , 2004, Psychophysiology.

[65]  Eiichi Naito,et al.  Role of the cerebellum in implicit motor skill learning: a PET study , 2004, Brain Research Bulletin.

[66]  P. Matthews,et al.  Changing brain networks for visuomotor control with increased movement automaticity. , 2004, Journal of neurophysiology.

[67]  J Leon Kenemans,et al.  Source analysis of the N2 in a cued Go/NoGo task. , 2005, Brain research. Cognitive brain research.

[68]  J. Doyon,et al.  Reorganization and plasticity in the adult brain during learning of motor skills , 2005, Current Opinion in Neurobiology.

[69]  Clay B. Holroyd,et al.  Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes , 2005, The European journal of neuroscience.

[70]  Gavin P. Lawrence,et al.  Differences in visuomotor control between the upper and lower visual fields , 2005, Experimental Brain Research.

[71]  M. Heath Role of limb and target vision in the online control of memory-guided reaches. , 2005, Motor control.

[72]  Mark S. Gilzenrat,et al.  The role of the locus coeruleus in mediating the attentional blink: a neurocomputational theory. , 2005, Journal of experimental psychology. General.

[73]  Jonathan D. Cohen,et al.  Decision making, the P3, and the locus coeruleus-norepinephrine system. , 2005, Psychological bulletin.

[74]  Clay B. Holroyd,et al.  Evidence for hierarchical error processing in the human brain , 2006, Neuroscience.

[75]  Vince D. Calhoun,et al.  Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data , 2005, NeuroImage.

[76]  A. Angrilli,et al.  Asymmetrical hemispheric EEG activation evoked by stimulus position during the Simon task , 2006, Neuroscience Letters.

[77]  Clay B. Holroyd,et al.  Predictive information and error processing: the role of medial-frontal cortex during motor control. , 2007, Psychophysiology.

[78]  Matthew Heath,et al.  The proximity of visual landmarks impacts reaching performance. , 2007, Spatial vision.