One‐bit sigma‐delta quantization with exponential accuracy

One‐bit quantization is a method of representing bandlimited signals by ±1 sequences that are computed from regularly spaced samples of these signals; as the sampling density λ → ∞, convolving these one‐bit sequences with appropriately chosen filters produces increasingly close approximations of the original signals. This method is widely used for analog‐to‐digital and digital‐to‐analog conversion, because it is less expensive and simpler to implement than the more familiar critical sampling followed by fine‐resolution quantization. However, unlike fine‐resolution quantization, the accuracy of one‐bit quantization is not well‐understood. A natural error lower bound that decreases like 2−λ can easily be given using information theoretic arguments. Yet, no one‐bit quantization algorithm was known with an error decay estimate even close to exponential decay. In this paper, we construct an infinite family of one‐bit sigma‐delta quantization schemes that achieves this goal. In particular, using this family, we prove that the error signal for π‐bandlimited signals is at most O(2−.07λ). © 2003 Wiley Periodicals, Inc.