Network Functions of Electrical Coupling Present in Multiple and Specific Sites in Behavior-Generating Circuits

[1]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[2]  J. Jing,et al.  Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit , 2015, The Journal of Neuroscience.

[3]  Jeffrey M. McManus,et al.  Preparing the Periphery for a Subsequent Behavior: Motor Neuronal Activity during Biting Generates Little Force but Prepares a Retractor Muscle to Generate Larger Forces during Swallowing in Aplysia , 2015, The Journal of Neuroscience.

[4]  Dirk Bucher,et al.  Neuromodulation of neurons and synapses , 2014, Current Opinion in Neurobiology.

[5]  E. Marder,et al.  Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. , 2014, Annual review of neuroscience.

[6]  W. Schafer,et al.  Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans , 2014, Nature Communications.

[7]  O. Sporns,et al.  From Connections to Function: The Mouse Brain Connectome Atlas , 2014, Cell.

[8]  Matthew H. Perkins,et al.  Complementary Interactions between Command-Like Interneurons that Function to Activate and Specify Motor Programs , 2014, The Journal of Neuroscience.

[9]  Astrid A. Prinz,et al.  Differential Roles of Nonsynaptic and Synaptic Plasticity in Operant Reward Learning-Induced Compulsive Behavior , 2014, Current Biology.

[10]  A. Pereda,et al.  Electrical synapses and their functional interactions with chemical synapses , 2014, Nature Reviews Neuroscience.

[11]  Alberto E. Pereda,et al.  Molecular and Functional Asymmetry at a Vertebrate Electrical Synapse , 2013, Neuron.

[12]  K. R. Weiss,et al.  Release of a single neurotransmitter from an identified interneuron coherently affects motor output on multiple time scales. , 2013, Journal of neurophysiology.

[13]  J. Jing,et al.  Functional Differentiation of a Population of Electrically Coupled Heterogeneous Elements in a Microcircuit , 2013, The Journal of Neuroscience.

[14]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[15]  Paul S. Katz,et al.  Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia) , 2012, Proceedings of the National Academy of Sciences.

[16]  J. Simmers,et al.  Functional Organization and Adaptability of a Decision-Making Network in Aplysia , 2012, Front. Neurosci..

[17]  Paul R Benjamin,et al.  Distributed network organization underlying feeding behavior in the mollusk Lymnaea , 2012, Neural systems & circuits.

[18]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[19]  Matthew H. Perkins,et al.  Coordination of Distinct Motor Structures through Remote Axonal Coupling of Projection Interneurons , 2011, The Journal of Neuroscience.

[20]  Paul S. Katz,et al.  Different Roles for Homologous Interneurons in Species Exhibiting Similar Rhythmic Behaviors , 2011, Current Biology.

[21]  Jason Sih-Yu Lai,et al.  Heterotypic Gap Junctions between Two Neurons in the Drosophila Brain Are Critical for Memory , 2011, Current Biology.

[22]  W. Schafer,et al.  Lateral Facilitation between Primary Mechanosensory Neurons Controls Nose Touch Perception in C. elegans , 2011, Neuron.

[23]  Klaudiusz R Weiss,et al.  Motor outputs in a multitasking network: relative contributions of inputs and experience-dependent network states. , 2009, Journal of neurophysiology.

[24]  J. Jing,et al.  Distinct Inhibitory Neurons Exert Temporally Specific Control over Activity of a Motoneuron ReceivingConcurrent Excitation and Inhibition , 2009, The Journal of Neuroscience.

[25]  E. Marder Electrical Synapses: Rectification Demystified , 2009, Current Biology.

[26]  J. Bacon,et al.  Molecular Mechanism of Rectification at Identified Electrical Synapses in the Drosophila Giant Fiber System , 2008, Current Biology.

[27]  J. Jing,et al.  Neural Analog of Arousal: Persistent Conditional Activation of a Feeding Modulator by Serotonergic Initiators of Locomotion , 2008, The Journal of Neuroscience.

[28]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[29]  J. Jing,et al.  An Input-Representing Interneuron Regulates Spike Timing and Thereby Phase Switching in a Motor Network , 2008, The Journal of Neuroscience.

[30]  J. Jing,et al.  Feeding CPG in Aplysia directly controls two distinct outputs of a compartmentalized interneuron that functions as a CPG element. , 2007, Journal of neurophysiology.

[31]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[32]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[33]  T. Crow,et al.  Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections. , 2006, Journal of neurophysiology.

[34]  J. Jing,et al.  Generation of Variants of a Motor Act in a Modular and Hierarchical Motor Network , 2005, Current Biology.

[35]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[36]  D. Faber,et al.  The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making? , 2005, Neuron.

[37]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[38]  W. Watson,et al.  Central pattern generator for swimming in Melibe , 2005, Journal of Experimental Biology.

[39]  J. Jing,et al.  The Construction of Movement with Behavior-Specific and Behavior-Independent Modules , 2004, The Journal of Neuroscience.

[40]  S. Giszter,et al.  Modular Premotor Drives and Unit Bursts as Primitives for Frog Motor Behaviors , 2004, The Journal of Neuroscience.

[41]  Jian Jing,et al.  Feeding Neural Networks in the Mollusc Aplysia , 2004, Neurosignals.

[42]  Ji-Ho Park,et al.  Concerted GABAergic Actions of Aplysia Feeding Interneurons in Motor Program Specification , 2003, The Journal of Neuroscience.

[43]  K. R. Weiss,et al.  Fast synaptic connections from CBIs to pattern-generating neurons in Aplysia: initiation and modification of motor programs. , 2003, Journal of neurophysiology.

[44]  J. Jing,et al.  Directional Avoidance Turns Encoded by Single Interneurons and Sustained by Multifunctional Serotonergic Cells , 2003, The Journal of Neuroscience.

[45]  Emilio Bizzi,et al.  Coordination and localization in spinal motor systems , 2002, Brain Research Reviews.

[46]  J. Jing,et al.  Interneuronal Basis of the Generation of Related but Distinct Motor Programs in Aplysia: Implications for Current Neuronal Models of Vertebrate Intralimb Coordination , 2002, The Journal of Neuroscience.

[47]  William N Frost,et al.  Highly Dissimilar Behaviors Mediated by a Multifunctional Network in the Marine Mollusk Tritonia diomedea , 2002, The Journal of Neuroscience.

[48]  J. Jing,et al.  Neural Mechanisms of Motor Program Switching inAplysia , 2001, The Journal of Neuroscience.

[49]  Paul S. Katz,et al.  Evidence that the Central Pattern Generator for Swimming in Tritonia Arose from a Non-Rhythmic Neuromodulatory Arousal System: Implications for the Evolution of Specialized Behavior1 , 2001 .

[50]  A. Murphy The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods , 2001, Progress in Neurobiology.

[51]  J. Jing,et al.  Escape swim network interneurons have diverse roles in behavioral switching and putative arousal in Pleurobranchaea. , 2000, Journal of neurophysiology.

[52]  W. J. Heitler,et al.  Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish , 1999, Trends in Neurosciences.

[53]  D. A. Baxter,et al.  In Vitro Analog of Operant Conditioning inAplysia. I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron , 1999, The Journal of Neuroscience.

[54]  I. Hurwitz,et al.  Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin. , 1999, Journal of neurophysiology.

[55]  K. R. Weiss,et al.  C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12. , 1999, Journal of neurophysiology.

[56]  J. Jing,et al.  Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. , 1999, Journal of neurophysiology.

[57]  T G Deliagina,et al.  Analysis of the Central Pattern Generator for Swimming in the Mollusk Clione a , 1998, Annals of the New York Academy of Sciences.

[58]  E. Cropper,et al.  Proprioceptive Input to Feeding Motor Programs inAplysia , 1998, The Journal of Neuroscience.

[59]  K. R. Weiss,et al.  Compartmentalization of Information Processing in anAplysia Feeding Circuit Interneuron through Membrane Properties and Synaptic Interactions , 1998, The Journal of Neuroscience.

[60]  D. A. Baxter,et al.  Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia. , 1998, Journal of neurophysiology.

[61]  I. Hurwitz,et al.  Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica. , 1997, Journal of neurophysiology.

[62]  K. R. Weiss,et al.  A Cerebral Central Pattern Generator in Aplysia and Its Connections with Buccal Feeding Circuitry , 1996, The Journal of Neuroscience.

[63]  C G Evans,et al.  Characterization of a radula opener neuromuscular system in Aplysia. , 1996, Journal of neurophysiology.

[64]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[65]  I. Hurwitz,et al.  B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. , 1996, Journal of neurophysiology.

[66]  Pierre Meyrand,et al.  A switch between two modes of synaptic transmission mediated by presynaptic inhibition , 1995, Nature.

[67]  T G Deliagina,et al.  Control of locomotion in marine mollusk Clione limacina. VIII. Cerebropedal neurons. , 1995, Journal of neurophysiology.

[68]  R. Satterlie,et al.  Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. III. Cerebral neurons. , 1995, The Journal of experimental biology.

[69]  K. R. Weiss,et al.  Dopaminergic neuron B20 generates rhythmic neuronal activity in the feeding motor circuitry ofAplysia , 1993, Brain Research.

[70]  H. Chiel,et al.  The timing of activity in motor neurons that produce radula movements distinguishes ingestion from rejection in Aplysia , 1993, Journal of Comparative Physiology A.

[71]  H. Chiel,et al.  In vivo buccal nerve activity that distinguishes ingestion from rejection can be used to predict behavioral transitions in Aplysia , 1993, Journal of Comparative Physiology A.

[72]  I Kupfermann,et al.  Identification and characterization of cerebral-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  F A Mussa-Ivaldi,et al.  Computations underlying the execution of movement: a biological perspective. , 1991, Science.

[74]  M. Kirk,et al.  Premotor neurons B51 and B52 in the buccal ganglia of Aplysia californica: synaptic connections, effects on ongoing motor rhythms, and peptide modulation. , 1990, Journal of neurophysiology.

[75]  R. Satterlie Reciprocal Inhibition and Postinhibitory Rebound Produce Reverberation in a Locomotor Pattern Generator , 1985, Science.

[76]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[77]  M. Kovac,et al.  Neural mechanisms of motor program switching in the mollusc Pleurobranchaea. II. Role of the ventral white cell, anterior ventral, and B3 buccal neurons , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  M. Kovac,et al.  Neural mechanisms of motor program switching in the mollusc Pleurobranchaea. I. Central motor programs underlying ingestion, egestion, and the "neutral" rhythm(s) , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  M. Kovac,et al.  Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica. II. Inhibitory inputs. , 1983, Journal of neurophysiology.

[80]  W. Davis,et al.  Substrates of command ability in a buccal neuron of Pleurobranchaea - I. Mechanisms of action potential broadening , 1982 .

[81]  I Kupfermann,et al.  Interganglionic cerebral-buccal mechanoafferents of Aplysia: receptive fields and synaptic connections to different classes of neurons involved in feeding behavior. , 1982, Journal of neurophysiology.

[82]  P. A. Getting Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. , 1981, Journal of Neurophysiology.

[83]  C. Rovainen Neurobiology of lampreys. , 1979, Physiological reviews.

[84]  M. Kovac,et al.  Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. , 1978, Science.

[85]  D. Gardner,et al.  Bilateral Symmetry and Interneuronal Organization in the Buccal Ganglia of Aplysia , 1971, Science.

[86]  M. Bennett,et al.  PHYSIOLOGY OF ELECTROTONIC JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[87]  D. Potter,et al.  Transmission at the giant motor synapses of the crayfish , 1959, The Journal of physiology.

[88]  R. Nargeot,et al.  Electrical Synapses and Learning–Induced Plasticity in Motor Rhythmogenesis , 2017 .

[89]  J. Bacon,et al.  Neural Circuits Underlying Escape Behavior in Drosophila : Focus on Electrical Signaling , 2017 .

[90]  J. Rekling,et al.  Electrical Coupling in the Generation of Vertebrate Motor Rhythms , 2017 .

[91]  R. Traub,et al.  Chapter 13 – Gap Junctions Between Pyramidal Cells Account for a Variety of Very Fast Network Oscillations (>80 Hz) in Cortical Structures , 2017 .

[92]  S. Shi,et al.  Lineage-Dependent Electrical Synapse Formation in the Mammalian Neocortex , 2017 .

[93]  M. Gray,et al.  The Role of Electrical Coupling in Rhythm Generation in Small Networks , 2017 .

[94]  J. Jing,et al.  Evolving Concepts of Arousal: Insights from Simple Model Systems , 2009, Reviews in the neurosciences.

[95]  R. Harris-Warrick,et al.  Amine modulation of electrical coupling in the pyloric network of the lobster stomatogastric ganglion , 2004, Journal of Comparative Physiology A.

[96]  J. Jing,et al.  Interneuronal and peptidergic control of motor pattern switching in Aplysia. , 2002, Journal of neurophysiology.

[97]  Ferdinando A. Mussa-Ivaldi,et al.  Toward a neurobiology of coordinate transformations , 1995 .

[98]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[99]  Douglas G. Stuart,et al.  Neural Control of Locomotion , 1976, Advances in Behavioral Biology.

[100]  I. Kupfermann Feeding behavior in Aplysia: a simple system for the study of motivation. , 1974, Behavioral biology.