On-sky Performance of the CLASS Q-band Telescope

The Cosmology Large Angular Scale Surveyor (CLASS) is mapping the polarization of the cosmic microwave background (CMB) at large angular scales (2 < ℓ ≲ 200) in search of a primordial gravitational wave B-mode signal down to a tensor-to-scalar ratio of r ≈ 0.01. The same data set will provide a near sample-variance-limited measurement of the optical depth to reionization. Between 2016 June and 2018 March, CLASS completed the largest ground-based Q-band CMB survey to date, covering over 31,000 square-degrees (75% of the sky), with an instantaneous array noise-equivalent temperature sensitivity of . We demonstrate that the detector optical loading (1.6 pW) and noise-equivalent power (19 ) match the expected noise model dominated by photon bunching noise. We derive a 13.1 ± 0.3 K pW−1 calibration to antenna temperature based on Moon observations, which translates to an optical efficiency of 0.48 ± 0.02 and a 27 K system noise temperature. Finally, we report a Tau A flux density of 308 ± 11 Jy at 38.4 ± 0.2 GHz, consistent with the Wilkinson Microwave Anisotropy Probe Tau A time-dependent spectral flux density model.

[1]  R. W. Ogburn,et al.  Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. , 2018, Physical review letters.

[2]  Edward J. Wollack,et al.  A 3D-printed broadband millimeter wave absorber. , 2018, The Review of scientific instruments.

[3]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[4]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor receiver design , 2018, Astronomical Telescopes + Instrumentation.

[5]  Aamir Ali,et al.  Design and characterization of the Cosmology Large Angular Scale Surveyor (CLASS) 93 GHz focal plane , 2018, Astronomical Telescopes + Instrumentation.

[6]  Aamir Ali,et al.  Variable-delay polarization modulators for the CLASS telescopes , 2018, Astronomical Telescopes + Instrumentation.

[7]  Michael E. Jones,et al.  The C-Band All-Sky Survey (C-BASS): design and capabilities , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  J. Aumont,et al.  NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution , 2018, Astronomy & Astrophysics.

[9]  R. B. Barreiro,et al.  Planck intermediate results. LIV. Polarized dust foregrounds , 2018 .

[10]  Edward J. Wollack,et al.  A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment’s Sample Variance Limited E-mode Measurement , 2018, The Astrophysical Journal.

[11]  Lyman A. Page,et al.  Results from the Atacama B-mode Search (ABS) experiment , 2018, Journal of Cosmology and Astroparticle Physics.

[12]  Guo-Ping Hu,et al.  Comparison and evaluation of the Chang'E microwave radiometer data based on theoretical computation of brightness temperatures at the Apollo 15 and 17 sites , 2017 .

[13]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[14]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[15]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[16]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[17]  G. C. Hilton,et al.  Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors , 2016, Journal of low temperature physics.

[18]  J. Aumont,et al.  Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis , 2016, 1606.07335.

[19]  R. Rebolo,et al.  QUIJOTE Scientific Results. II. Polarisation Measurements of the Microwave Emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44 , 2016, 1605.04741.

[20]  Edward J. Wollack,et al.  Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization , 2015, 1511.05036.

[21]  Edward J. Wollack,et al.  RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS , 2015, 1509.04628.

[22]  Edward J. Wollack,et al.  MEASURING THE LARGEST ANGULAR SCALE CMB B-MODE POLARIZATION WITH GALACTIC FOREGROUNDS ON A CUT SKY , 2015, 1508.00017.

[23]  Ricardo Bustos,et al.  Parque Astronómico de Atacama: An Ideal Site for Millimeter, Submillimeter, and Mid-Infrared Astronomy , 2014, 1410.2451.

[24]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[25]  Michele Limon,et al.  The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters , 2014, Astronomical Telescopes and Instrumentation.

[26]  Aamir Ali,et al.  Scalable background-limited polarization-sensitive detectors for mm-wave applications , 2014, Astronomical Telescopes and Instrumentation.

[27]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[28]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[29]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[30]  Edward J. Wollack,et al.  Precision control of thermal transport in cryogenic single-crystal silicon devices , 2014, 1403.1326.

[31]  M. Nolta,et al.  Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument. , 2013, The Review of scientific instruments.

[32]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[33]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[34]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[35]  Samuel Harvey Moseley,et al.  Detector architecture of the cosmology large angular scale surveyor , 2012, Other Conferences.

[36]  Edward J. Wollack,et al.  The cosmology large angular scale surveyor (CLASS): 40 GHz optical design , 2012, Other Conferences.

[37]  Ziyuan Ouyang,et al.  First microwave map of the Moon with Chang’E-1 data: The role of local time in global imaging , 2012 .

[38]  Edward J. Wollack,et al.  Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetry , 2011, Journal of Low Temperature Physics.

[39]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES , 2010, 1001.4731.

[40]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[41]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[42]  J. E. Ruhl,et al.  Polarization modulators for CMBPol , 2009 .

[43]  M. Hobson,et al.  Radio source calibration for the Very Small Array and other cosmic microwave background instruments at around 30 GHz , 2008 .

[44]  M. Halpern,et al.  Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomy , 2008 .

[45]  A. Readhead,et al.  Limits on the Polarization of the Cosmic Microwave Background Radiation at Multipoles up to l ~ 2000 , 2005, astro-ph/0502174.

[46]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[47]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[48]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[49]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[50]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[51]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[52]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[53]  Jeffrey L. Linsky,et al.  The Moon as a Proposed Radiometric Standard for Microwave and Infrared Observations of Extended Sources , 1973 .

[54]  D. H. Martin,et al.  Polarised interferometric spectrometry for the millimetre and submillimetre spectrum , 1970 .

[55]  K. Wulfsberg,et al.  Observations of the Crab Nebula at a wavelength of 8.6 MM , 1967 .

[56]  J. Linsky Models of the lunar surface including temperature-dependent thermal properties Scientific report no. 8 , 1966 .

[57]  V. D. Krotikov,et al.  RADIO EMISSION AND NATURE OF THE MOON , 1964 .

[58]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations : Beam Profiles and Window Functions , 2018 .

[59]  R. W. Hobbs,et al.  FLUX DENSITIES OF RADIO SOURCES AT 9.55-MM WAVELENGTH. , 1968 .

[60]  Martin J. Rees,et al.  POLARIZATION AND SPECTRUM OF THE PRIMEVAL RADIATION IN AN ANISOTROPIC UNIVERSE. , 1968 .

[61]  V. Troitsky,et al.  Influence of the temperature dependence of lunar material properties on the spectrum of the Moon's radio emission , 1968 .