Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

[1]  J. Goodenough,et al.  Localized to Itinerant Electronic Transition in Perovskite Oxides , 2010 .

[2]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[3]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[4]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[5]  Vittal K. Yachandra,et al.  X-ray absorption spectroscopy , 2009, Photosynthesis Research.

[6]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[7]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[8]  R. Service Transportation research. Hydrogen cars: fad or the future? , 2009, Science.

[9]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co 2 + , 2008 .

[10]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[11]  J. Nørskov,et al.  Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. , 2008, Angewandte Chemie.

[12]  M. Armand,et al.  Building better batteries , 2008, Nature.

[13]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[14]  George M Whitesides,et al.  Don't Forget Long-Term Fundamental Research in Energy , 2007, Science.

[15]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[16]  Junliang Zhang,et al.  Catalytic Activity−d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions , 2007 .

[17]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[18]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[19]  P. Ross,et al.  Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk(Ag(hkl)) studies. , 2006, The journal of physical chemistry. B.

[20]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[21]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[22]  J. Goodenough,et al.  Ferromagnetism in LaCoO3 , 2004 .

[23]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[24]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[25]  H. Uchida,et al.  Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments , 1998 .

[26]  Hubert A. Gasteiger,et al.  Oxygen reduction of platinum low-index single-crystal surfaces in alkaline solution: Rotating ring disk{sub Pt(hkl)} studies , 1996 .

[27]  Uchida,et al.  Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy. , 1992, Physical review. B, Condensed matter.

[28]  M. Abbate,et al.  Probing depth of soft x‐ray absorption spectroscopy measured in total‐electron‐yield mode , 1992 .

[29]  J. Tascón,et al.  Structure and Reactivity of Perovskite-Type Oxides , 1989 .

[30]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[31]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[32]  Y. Matsumoto,et al.  Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction , 1977 .

[33]  Y. Matsumoto,et al.  Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides , 1977 .

[34]  H. Tamura,et al.  A NEW CATALYST FOR CATHODIC REDUCTION OF OXYGEN: LANTHANUM NICKEL OXIDE , 1975 .

[35]  F. Morin,et al.  D-Band Surface States on Wide Band Gap Insulators. A Conceptual Model for Surface States and Catalysis on d-Band Perovskites. , 1975 .

[36]  F. Morin,et al.  Surface States and Catalysis ond-Band Perovskites , 1973 .

[37]  D. Dowden Crystal and Ligand Field Models of Solid Catalysts , 1972 .

[38]  D. Meadowcroft,et al.  Low-cost Oxygen Electrode Material , 1970, Nature.