A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mesh refinement in the Cartesian mesh structure for interface problems. Numerical results are provided to demonstrate the convergence and local mesh refinement features of these DG-IFE methods.

[1]  Shun Zhang,et al.  Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations , 2010, SIAM J. Numer. Anal..

[2]  Raed Kafafy,et al.  Whole Ion Optics Gridlet Simulations Using a Hybrid-Grid Immersed-Finite-Element Particle-in-Cell Code , 2007 .

[3]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[4]  Ramsharan Rangarajan,et al.  Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes , 2014 .

[5]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[6]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[7]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[8]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[11]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[12]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[13]  Peter Kuster Finite Element Methods And Their Applications , 2016 .

[14]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[15]  Xiaoming He,et al.  The convergence of the bilinear and linear immersed finite element solutions to interface problems , 2012 .

[16]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[17]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[18]  Xiaoming He Bilinear Immersed Finite Elements for Interface Problems , 2009 .

[19]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[20]  Kye T. Wee,et al.  An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..

[21]  Xiaoming He,et al.  A selective immersed discontinuous Galerkin method for elliptic interface problems , 2014 .

[22]  Xiaoming He,et al.  Modeling Electrostatic Levitation of Dust Particles on Lunar Surface , 2008, IEEE Transactions on Plasma Science.

[23]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[24]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[25]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..

[26]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[27]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[28]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[29]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[30]  Shun Zhang,et al.  Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations , 2011, SIAM J. Numer. Anal..

[31]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[32]  Xiaoming He,et al.  Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient , 2010, J. Syst. Sci. Complex..

[33]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[34]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[35]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[36]  Xu Zhang,et al.  A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems , 2013 .

[37]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[38]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[39]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[40]  Do Y. Kwak,et al.  Optimal convergence analysis of an immersed interface finite element method , 2010, Adv. Comput. Math..

[41]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[42]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..