Strategies for hydrogen storage in metal--organic frameworks.

Increased attention is being focused on metal-organic frameworks as candidates for hydrogen storage materials. This is a result of their many favorable attributes, such as high porosity, reproducible and facile syntheses, amenability to scale-up, and chemical modification for targeting desired properties. A discussion of several strategies aimed at improving hydrogen uptake in these materials is presented. These strategies include the optimization of pore size and adsorption energy by linker modification, impregnation, catenation, and the inclusion of open metal sites and lighter metals.

[1]  R. Irani Hydrogen Storage: High-Pressure Gas Containment , 2002 .

[2]  C. Anderson,et al.  Computational Study Of Molecular Hydrogen In Zeolite Na-A. I. Potential Energy Surfaces And Thermodynamic Separation Factors For Ortho And Para Hydrogen , 1999 .

[3]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[5]  X. Sha,et al.  The location of adsorbed hydrogen in graphite nanostructures. , 2004, Journal of the American Chemical Society.

[6]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[7]  B. Bogdanovic,et al.  Light metal hydrides and complex hydrides for hydrogen storage. , 2004, Chemical communications.

[8]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[9]  K. S. Dhathathreyan,et al.  Hydrogen storage in carbon nanotubes and related materials , 2003 .

[10]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[11]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[12]  Shannon Franzky High-pressure 825 bar hydrogen storage , 2002 .

[13]  B. Fultz,et al.  Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications , 2002 .

[14]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[15]  R. Chahine,et al.  Determination of the Adsorption Isotherms of Hydrogen on Activated Carbons above the Critical Temperature of the Adsorbate over Wide Temperature and Pressure Ranges , 2001 .

[16]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[17]  Tzimas Evangelos,et al.  Hydrogen Storage: State-of-the-Art and Future Perspective. , 2003 .

[18]  Wim Klopper,et al.  On the Interaction of Dihydrogen with Aromatic Systems , 2004 .

[19]  Tatsuo C. Kobayashi,et al.  Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. , 2005, Angewandte Chemie.

[20]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[21]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[22]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[23]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[24]  D. Coker,et al.  Computational study of molecular hydrogen in zeolite Na–A. II. Density of rotational states and inelastic neutron scattering spectra , 2001 .

[25]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[26]  J. Wolf Liquid-Hydrogen Technology for Vehicles , 2002 .

[27]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[28]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[29]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[30]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[31]  G. Shimizu,et al.  Coordination solids via assembly of adaptable components: systematic structural variation in alkaline earth organosulfonate networks. , 2003, Chemistry.

[32]  Louis Schlapbach,et al.  Hydrogen as a Fuel and Its Storage for Mobility and Transport , 2002 .

[33]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[34]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[35]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[36]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[37]  Brooks Hanson,et al.  Not So Simple , 2004, Science.

[38]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[39]  Donald W Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[40]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[41]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[42]  M. O'keeffe,et al.  Infinite secondary building units and forbidden catenation in metal-organic frameworks. , 2002, Angewandte Chemie.

[43]  Toshihiro Tanaka,et al.  Use of Thermodynamic Data to Determine Surface Tension and Viscosity of Metallic Alloys , 1999 .

[44]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[45]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[46]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[47]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[48]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[49]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[50]  M. Côté,et al.  First-principles study of the rotational transitions of H2 physisorbed over benzene. , 2004, The Journal of chemical physics.

[51]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[52]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[53]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[54]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[55]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[56]  A. Cheetham,et al.  Hydrogen adsorption in nanoporous nickel(II) phosphates. , 2003, Journal of the American Chemical Society.

[57]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[58]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[59]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[60]  Qing Min Wang,et al.  Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework , 2003 .

[61]  Paul M. Grant,et al.  Hydrogen lifts off — with a heavy load , 2003, Nature.

[62]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[63]  G. Seifert,et al.  Hydrogen storage by physisorption on nanostructured graphite platelets , 2004 .

[64]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.