The influence of the environment on Lévy random search efficiency: Fractality and memory effects

An open problem in the field of random searches relates to optimizing the search efficiency in fractal environments. Here we address this issue through a systematic study of Levy searches in landscapes encompassing several degrees of target aggregation and fractality. For scarce resources, non-destructive searches with unrestricted revisits to targets are shown to present universal optimal behavior irrespective of the general scaling properties of the spatial distribution of targets. In contrast, no such universal behavior occurs in the destructive case with forbidden revisits, in which the optimal strategy strongly depends on the degree of target aggregation. We also investigate how the presence of memory and learning skills of the searcher affect the search efficiency. By considering a limiting model in which the searcher learns through recent experience to recognize food-rich areas, we find that a statistical memory of previous encounters does not necessarily increase the rate of target findings in random searches. Instead, there is an optimal extent of memory, dependent on specific details of the search space and stochastic dynamics, which maximizes the search efficiency. This finding suggests a more general result, namely that in some instances there are actual advantages to ignoring certain pieces of partial information while searching for objects.

[1]  Richard Byrne,et al.  What wild primates know about resources: opening up the black box , 2007, Animal Cognition.

[2]  Ola Olsson,et al.  The foraging benefits of information and the penalty of ignorance , 2006 .

[3]  Henri Weimerskirch,et al.  Does Prey Capture Induce Area‐Restricted Search? A Fine‐Scale Study Using GPS in a Marine Predator, the Wandering Albatross , 2007, The American Naturalist.

[4]  A M Reynolds,et al.  The Lévy flight paradigm: random search patterns and mechanisms. , 2009, Ecology.

[5]  Denis Boyer,et al.  Modelling the mobility of living organisms in heterogeneous landscapes: does memory improve foraging success? , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  M. Rietkerk,et al.  Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems , 2007, Nature.

[7]  A I Houston,et al.  Memory and the efficient use of information. , 1987, Journal of theoretical biology.

[8]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[9]  S. Levin,et al.  Superdiffusion and encounter rates in diluted, low dimensional worlds , 2008 .

[10]  Mathieu Coppey,et al.  A stochastic model for intermittent search strategies , 2005 .

[11]  M. Shlesinger Mathematical physics: Search research , 2006, Nature.

[12]  D. Boyer,et al.  Lévy-like behaviour in deterministic models of intelligent agents exploring heterogeneous environments , 2009, 0901.4037.

[13]  H E Stanley,et al.  Average time spent by Lévy flights and walks on an interval with absorbing boundaries. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Srinivasan Search for Research , 2014, Journal of conservative dentistry : JCD.

[15]  Stuart K. Card,et al.  Information foraging in information access environments , 1995, CHI '95.

[16]  S. Levin THE PROBLEM OF PATTERN AND SCALE IN ECOLOGY , 1992 .

[17]  Marcos C. Santos,et al.  Dynamical robustness of Lévy search strategies. , 2003, Physical review letters.

[18]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[19]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[20]  George L. Hunt,et al.  Foraging in a fractal environment: Spatial patterns in a marine predator-prey system , 1992, Landscape Ecology.

[21]  M. Hoddle The effect of prey species and environmental complexity on the functional response of Franklinothrips orizabensis: a test of the fractal foraging model , 2003 .

[22]  A. James,et al.  Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus Brownian strategies. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[24]  Frederic Bartumeus,et al.  How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes , 2011, PLoS Comput. Biol..

[25]  Todd M. Scanlon,et al.  Positive feedbacks promote power-law clustering of Kalahari vegetation , 2007, Nature.

[26]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[27]  H. Stanley,et al.  The Physics of Foraging: An Introduction to Random Searches and Biological Encounters , 2011 .

[28]  Mark J. Miller,et al.  A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning. , 2008, Journal of theoretical biology.

[29]  A. King,et al.  Dispersal success on fractal landscapes: a consequence of lacunarity thresholds , 1999, Landscape Ecology.

[30]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[31]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[32]  Andy Reynolds,et al.  How many animals really do the Lévy walk? Comment. , 2008, Ecology.

[33]  S. Benhamou HOW MANY ANIMALS REALLY DO THE LÉVY WALK , 2007 .

[34]  H. Berg Random Walks in Biology , 2018 .

[35]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Andy M. Reynolds,et al.  Balancing the competing demands of harvesting and safety from predation: Lévy walk searches outperform composite Brownian walk searches but only when foraging under the risk of predation , 2010 .

[37]  Kimberly A. With,et al.  Habitat area trumps fragmentation effects on arthropods in an experimental landscape system , 2011, Landscape Ecology.

[38]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[39]  Sergey V. Buldyrev,et al.  Properties of Lévy flights on an interval with absorbing boundaries , 2001 .

[40]  Germinal Cocho,et al.  Scale-free foraging by primates emerges from their interaction with a complex environment , 2006, Proceedings of the Royal Society B: Biological Sciences.

[41]  Henri Weimerskirch,et al.  Are seabirds foraging for unpredictable resources , 2007 .

[42]  Frederic Bartumeus,et al.  Fractal reorientation clocks: Linking animal behavior to statistical patterns of search , 2008, Proceedings of the National Academy of Sciences.

[43]  M. Ritchie Scale-dependent foraging and patch choice in fractal environments , 2004, Evolutionary Ecology.

[44]  M. Shlesinger,et al.  Lévy Walks Versus Lévy Flights , 1986 .

[45]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[46]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[47]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[48]  M. Levandowsky,et al.  Swimming behavior and chemosensory responses in the protistan microzooplankton as a function of the hydrodynamic regime , 1988 .

[49]  S. Benhamou,et al.  Spatial analysis of animals' movements using a correlated random walk model* , 1988 .

[50]  Andy M. Reynolds On the intermittent behaviour of foraging animals , 2006 .

[51]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[52]  Sergey V. Buldyrev,et al.  Statistical physics: The salesman and the tourist , 2001, Nature.

[53]  G M Viswanathan,et al.  Origin of power-law distributions in deterministic walks: the influence of landscape geometry. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[55]  Sergey V. Buldyrev,et al.  Lévy flights and random searches , 2009 .

[56]  Michaelangelo D. Tabone,et al.  Balancing organization and flexibility in foraging dynamics. , 2010, Journal of theoretical biology.

[57]  G. Viswanathan,et al.  Lévy flights and superdiffusion in the context of biological encounters and random searches , 2008 .

[58]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[59]  Masao Doi,et al.  Introduction to Polymer Physics , 1996 .

[60]  Ralf Metzler,et al.  And did he search for you, and could not find you? , 2009 .

[61]  Ralf Metzler,et al.  Optimal target search on a fast-folding polymer chain with volume exchange. , 2005, Physical review letters.

[62]  John Brindley,et al.  Optimal foraging in patchy turbulent environments , 2003 .

[63]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[64]  Darcy R. Visscher,et al.  Memory keeps you at home: a mechanistic model for home range emergence , 2009 .

[65]  A M Reynolds,et al.  Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. , 2009, Journal of theoretical biology.

[66]  R. Metzler,et al.  Facilitated diffusion with DNA coiling , 2009, Proceedings of the National Academy of Sciences.

[67]  Mark S. Boyce,et al.  Quantifying patch distribution at multiple spatial scales: applications to wildlife-habitat models , 2004, Landscape Ecology.

[68]  M. Plank,et al.  Optimal foraging: Lévy pattern or process? , 2008, Journal of The Royal Society Interface.

[69]  M. Palmer,et al.  Fractal geometry: a tool for describing spatial patterns of plant communities , 1988, Vegetatio.

[70]  Mark S. Boyce,et al.  Quantifying patch distribution at multiple spatial scales: Applications to wildlife-habitat models , 2005, Landscape Ecology.

[71]  F. Bartumeus,et al.  Optimal search behavior and classic foraging theory , 2009 .

[72]  P. Fauchald,et al.  Foraging in a Hierarchical Patch System , 1999, The American Naturalist.

[73]  Marta C. González,et al.  Understanding individual human mobility patterns , 2008, Nature.

[74]  Andy M. Reynolds,et al.  Adaptive Lévy walks can outperform composite Brownian walks in non-destructive random searching scenarios , 2009 .

[75]  G. Viswanathan,et al.  The influence of turning angles on the success of non-oriented animal searches. , 2008, Journal of Theoretical Biology.

[76]  S. L. Lima,et al.  SEARCH STRATEGIES FOR LANDSCAPE‐LEVEL INTERPATCH MOVEMENTS , 1999 .

[77]  Bruce T. Milne,et al.  Spatial Aggregation and Neutral Models in Fractal Landscapes , 1992, The American Naturalist.

[78]  Denis Boyer,et al.  Non-random walks in monkeys and humans , 2011, Journal of The Royal Society Interface.

[79]  A. King,et al.  Extinction Thresholds for Species in Fractal Landscapes , 1999 .

[80]  Kjell Einar Erikstad,et al.  SCALE‐DEPENDENT PREDATOR–PREY INTERACTIONS: THE HIERARCHICAL SPATIAL DISTRIBUTION OF SEABIRDS AND PREY , 2000 .

[81]  Thomas J. Valone,et al.  Are animals capable of Bayesian updating? An empirical review , 2006 .

[82]  S. Levin The problem of pattern and scale in ecology , 1992 .

[83]  A. Reynolds Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns , 2010, Journal of The Royal Society Interface.

[84]  G. Viswanathan,et al.  Optimal random searches of revisitable targets: Crossover from superdiffusive to ballistic random walks , 2004 .

[85]  Gandhi M. Viswanathan Improvements in the statistical approach to random Levy flight searches M.G.E. da Luz, S.V. Buldyrev, S. Havlin, E.P. Raposo, H.E. Stanley, , 2001 .

[86]  Michael F. Shlesinger Follow the money , 2006 .