Lagrangian numerical methods for ocean biogeochemical simulations

Abstract We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Peclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection–reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

[1]  Marina Lévy,et al.  The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2013 .

[2]  Jacques Vanneste,et al.  FKPP Fronts in Cellular Flows: The Large-Péclet Regime , 2015, SIAM J. Appl. Math..

[3]  Gurvan Madec,et al.  Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects , 2012 .

[4]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  A. Mariotti,et al.  The Evolution of the Ozone “Collar” in the Antarctic Lower Stratosphere during Early August 1994 , 2000 .

[6]  Edward Ott,et al.  Stretch, Twist, Fold: The Fast Dynamo , 1995 .

[7]  P. Haertel,et al.  Lagrangian overturning and the Madden–Julian Oscillation , 2014 .

[8]  B. Legras,et al.  The effect of small-scale inhomogeneities on ozone depletion in the Arctic , 1996, Nature.

[9]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[10]  C. Pasquero Differential eddy diffusion of biogeochemical tracers , 2005 .

[11]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[12]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[13]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[14]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[15]  Daniel Ruiz,et al.  A Fast Algorithm for Matrix Balancing , 2013, Web Information Retrieval and Linear Algebra Algorithms.

[16]  S. J. Brentnall,et al.  The impact of diffusion and stirring on the dynamics of interacting populations. , 2006, Journal of theoretical biology.

[17]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[18]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[19]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[20]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[21]  P. Rhines,et al.  How rapidly is a passive scalar mixed within closed streamlines? , 1983, Journal of Fluid Mechanics.

[22]  Jon Louis Bentley,et al.  The Complexity of Finding Fixed-Radius Near Neighbors , 1977, Inf. Process. Lett..

[23]  Audrey Estublier,et al.  Choice of an advection scheme for biogeochemical models , 2001 .

[24]  S. Griffies,et al.  A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation , 2012 .

[25]  Annalisa Bracco,et al.  Horizontal advection, diffusion and plankton spectra at the sea surface , 2009 .

[26]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[27]  Adrian P. Martin,et al.  An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2015 .

[28]  Andrea Klug,et al.  Numerical Methods For Fluid Dynamics With Applications To Geophysics , 2016 .

[29]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[30]  A. Provenzale,et al.  Plankton cycles disguised by turbulent advection. , 2007, Theoretical population biology.

[31]  Janet Campbell,et al.  Biogeochemical patchiness at the sea surface , 2002 .

[32]  W. Boos,et al.  Origins of Moist Air in Global Lagrangian Simulations of the Madden–Julian Oscillation , 2017 .

[33]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[34]  Charles R. Doering,et al.  Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality , 2003 .

[35]  Annalisa Bracco,et al.  Patchy productivity in the open ocean , 2002 .

[36]  Siegfried Raasch,et al.  The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model , 2017 .

[37]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[38]  David A. Randall,et al.  Could a Pile of Slippery Sacks Behave Like an Ocean , 2002 .

[39]  Pierre Degond,et al.  A Deterministic Approximation of Diffusion Equations Using Particles , 1990, SIAM J. Sci. Comput..

[40]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[41]  Constructing an idealized model of the North Atlantic Ocean using slippery sacks , 2009 .

[42]  John Brindley,et al.  Plankton patchiness and its effect on larger-scale productivity , 2003 .

[43]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[44]  Marcello Vichi,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory , 2007 .