A simplified irreversible Otto engine model with fluctuations in the combustion heat

SYNOPSIS In this work we present a simplified irreversible Otto engine model which includes power losses and a chemical combustion reaction at the end of the adiabatic compression. The heat released in the combustion reaction is taken as a fluctuant quantity around its mean value. The fluctuations are simulated by means of a Gaussian stochastic process for a rich-air intake mixture and by two non-linear deterministic noisy maps in the case of poor-air mixtures. The fluctuant combustion heat drives the Otto engine model producing in turn fluctuant power output and fluctuant cycle efficiency. We analyse the size of the fluctuant outputs in terms of the fluctuant input.

[1]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[2]  B. Andresen,et al.  Probabilistic Finite Time Thermodynamics: A Chemically Driven Engine , 1996 .

[3]  Lixuan Chen,et al.  The effect of heat‐transfer law on performance of a two‐heat‐source endoreversible cycle , 1989 .

[4]  Alejandro Medina,et al.  Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages , 1996 .

[5]  Jincan Chen THE MAXIMUM POWER OUTPUT AND MAXIMUM EFFICIENCY OF AN IRREVERSIBLE CARNOT HEAT ENGINE , 1994 .

[6]  Karl Heinz Hoffmann,et al.  Optimal paths for thermodynamic systems: The ideal diesel cycle , 1982 .

[7]  M. Pascual Understanding nonlinear dynamics , 1996 .

[8]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[9]  S. Sandler Chemical and engineering thermodynamics , 1977 .

[10]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[11]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[12]  Karl Heinz Hoffmann,et al.  Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? , 2004 .

[13]  C. Finney,et al.  Observing and modeling nonlinear dynamics in an internal combustion engine , 1998 .

[14]  T. D. Navarrete-González,et al.  Otto and Diesel engine models with cyclic variability , 2002 .

[15]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[16]  J. Burzler,et al.  Endoreversible Thermodynamics , 2006 .

[17]  L. Chen,et al.  Effects of heat transfer and variable specific heats of working fluid on performance of a Miller cycle , 2005 .

[18]  Fernando Angulo-Brown,et al.  A non-endoreversible Otto cycle model: improving power output and efficiency , 1996 .

[19]  Grzegorz Litak,et al.  A Numerical Study of a Simple Stochastic/ Deterministic Model of Cycle-to-Cycle Combustion Fluctuations in Spark Ignition Engines , 2004 .

[20]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[21]  F. Angulo-Brown,et al.  Compression ratio of an optimized air standard Otto-cycle model , 1994 .

[22]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[23]  H. Yavuz,et al.  Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility , 1994 .

[24]  Santiago Velasco,et al.  An irreversible and optimized four stroke cycle model for automotive engines , 1996 .

[25]  Sergio Sibilio,et al.  Recent Advances in Finite-Time Thermodynamics , 1999 .

[26]  Santiago Velasco,et al.  On an irreversible air standard Otto-cycle model , 1995 .

[27]  Kennel,et al.  Symbolic approach for measuring temporal "irreversibility" , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.