An accurate tool for the fast generation of dark matter halo catalogues.

We present a new parallel implementation of the PINpointing Orbit Crossing-Collapsed HIerarchical Objects (PINOCCHIO) algorithm, a quick tool, based on Lagrangian Perturbation Theory, for the hierarchical build-up of dark matter (DM) haloes in cosmological volumes. To assess its ability to predict halo correlations on large scales, we compare its results with those of an N-body simulation of a 3 h−1 Gpc box sampled with 20483 particles taken from the MICE suite, matching the same seeds for the initial conditions. Thanks to the Fastest Fourier Transforms in the West (FFTW) libraries and to the relatively simple design, the code shows very good scaling properties. The CPU time required by PINOCCHIO is a tiny fraction (∼1/2000) of that required by the MICE simulation. Varying some of PINOCCHIO numerical parameters allows one to produce a universal mass function that lies in the range allowed by published fits, although it underestimates the MICE mass function of Friends-of-Friends (FoF) haloes in the high-mass tail. We compare the matter–halo and the halo–halo power spectra with those of the MICE simulation and find that these two-point statistics are well recovered on large scales. In particular, when catalogues are matched in number density, agreement within 10 per cent is achieved for the halo power spectrum. At scales k > 0.1 h Mpc−1, the inaccuracy of the Zel’dovich approximation in locating halo positions causes an underestimate of the power spectrum that can be modelled as a Gaussian factor with a damping scale of d = 3 h−1 Mpc at z = 0, decreasing at higher redshift. Finally, a remarkable match is obtained for the reduced halo bispectrum, showing a good description of non-linear halo bias. Our results demonstrate the potential of PINOCCHIO as an accurate and flexible tool for generating large ensembles of mock galaxy surveys, with interesting applications for the analysis of large galaxy redshift surveys.

[1]  Lagrangian dynamics in non-flat universes and non-linear gravitational evolution , 1994, astro-ph/9406016.

[2]  F. Castander,et al.  Simulating the Universe with MICE: The abundance of massive clusters , 2009, 0907.0019.

[3]  S. Borgani,et al.  Constraining neutrino properties with a Euclid-like galaxy cluster survey , 2013, 1303.4550.

[4]  J. Fry,et al.  The Galaxy correlation hierarchy in perturbation theory , 1984 .

[5]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[6]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[7]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[8]  S. Kay,et al.  Statistics of the Sunyaev–Zel'dovich effect power spectrum , 2009, 0903.5473.

[9]  Y. Jing,et al.  ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS , 2008, 0811.0828.

[10]  Case Western Reserve University,et al.  Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.

[11]  Sebastian Pueblas,et al.  Cosmology and the Bispectrum , 2006 .

[12]  On the origin of cold dark matter halo density profiles , 2005, astro-ph/0508624.

[13]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[14]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[15]  V. Boucher,et al.  Imprints of dark energy on cosmic structure formation: II) Non-Universality of the halo mass function , 2010, 1001.3425.

[16]  A. Cimatti,et al.  Measuring the neutrino mass from future wide galaxy cluster catalogues , 2011, 1112.4810.

[17]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[18]  M. Crocce,et al.  The matter bispectrum in N-body simulations with non-Gaussian initial conditions , 2010, 1003.0007.

[19]  M. Bartelmann,et al.  A study of relative velocity statistics in Lagrangian perturbation theory with PINOCCHIO , 2010, 1011.1559.

[20]  F. Castander,et al.  The onion universe: all sky lightcone simulations in spherical shells , 2007, 0711.1540.

[21]  On the assembly history of dark matter haloes , 2005, astro-ph/0510372.

[22]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[23]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[24]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[25]  B. Ciardi,et al.  Constraints on the initial mass function of the first stars , 2006 .

[26]  M. Crocce,et al.  The halo bispectrum in N-body simulations with non-Gaussian initial conditions: The halo bispectrum and non-Gaussian initial conditions , 2011, 1111.6966.

[27]  V. Springel,et al.  Scaling relations for galaxy clusters in the Millennium-XXL simulation , 2012, 1203.3216.

[28]  C. Giocoli,et al.  The substructure hierarchy in dark matter haloes , 2009, 0911.0436.

[29]  Durham,et al.  Lightcone mock catalogues from semi-analytic models of galaxy formation – I. Construction and application to the BzK colour selection , 2012, 1206.4049.

[30]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[31]  Tracing large-scale structure at high redshift with Lyman-α emitters: the effect of peculiar velocities , 2005, astro-ph/0505477.

[32]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[33]  Department of Physics,et al.  Convergence of galaxy properties with merger tree temporal resolution , 2011, 1107.4098.

[34]  I. Szapudi,et al.  Shrinkage estimation of the power spectrum covariance matrix , 2007, 0711.2509.

[35]  M. Liguori,et al.  Primordial Non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure , 2010, 1001.4707.

[36]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[37]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[38]  PINOCCHIO and the hierarchical build-up of dark matter haloes , 2001, astro-ph/0109324.

[39]  T. Buchert,et al.  Lagrangian theory of gravitational instability of Friedman–Lemaître cosmologies – second-order approach: an improved model for non-linear clustering , 1993 .

[40]  A Lagrangian dynamical theory for the mass function of cosmic structures — II. Statistics , 1996, astro-ph/9606029.

[41]  N. Clerc,et al.  Precision cosmology with a wide area XMM cluster survey , 2010, 1009.3182.

[42]  O. Lahav,et al.  Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck measurements , 2009, 0910.4714.

[43]  M. Manera,et al.  Large-scale bias and efficient generation of initial conditions for nonlocal primordial non-Gaussianity , 2011, 1108.5512.

[44]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[45]  F. Bouchet,et al.  Precollapse Scale Invariance in Gravitational Instability , 1991 .

[46]  Uros Seljak,et al.  Primordial non-Gaussianity from the large-scale structure , 2010, 1003.5020.

[47]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[48]  P. Monaco,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001 .

[49]  Y. Jing,et al.  Mass and Redshift Dependence of Dark Halo Structure , 2003, astro-ph/0309375.

[50]  Cristiano Porciani,et al.  Modelling large-scale halo bias using the bispectrum , 2011, 1109.3458.

[51]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[52]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.