Multiparameter estimation using only a chaotic time series and its applications.

An important extension to the techniques of synchronization-based parameter estimation is presented. Based on adaptive chaos synchronization, several methods are proposed to dynamically estimate multiple parameters using only a scalar chaotic time series. In comparison with previous schemes, the presented methods decrease the cost of parameter estimation and are more applicable in practice. Numerical examples are used to demonstrate the effectiveness and robustness of the presented methods. As an example application, an implementation of multichannel digital communication is proposed, where multiparameter modulation is used to simultaneously transmit more than one digital message. From a theoretical perspective, such an encoding increases the difficulty to directly read out the message from the transmitted signal and decreases the implementation cost.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Jamal Daafouz,et al.  Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification , 2005 .

[3]  Debin Huang,et al.  Stabilizing near-nonhyperbolic chaotic systems with applications. , 2004, Physical review letters.

[4]  C. Grebogi,et al.  Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[6]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[7]  H. Sakaguchi Parameter evaluation from time sequences using chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  H Leung,et al.  Ergodic chaos-based communication schemes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Zhan Meng,et al.  Chaotic digital communication by encoding initial conditions. , 2004, Chaos.

[10]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[11]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[12]  A d'Anjou,et al.  Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Debin Huang Adaptive-feedback control algorithm. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[16]  Debin Huang,et al.  A Simple Adaptive-feedback Controller for Identical Chaos Synchronization , 2022 .

[17]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[18]  Jinde Cao,et al.  Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks. , 2006, Chaos.

[19]  Louis M Pecora,et al.  A unified approach to attractor reconstruction. , 2007, Chaos.

[20]  Rongwei Guo,et al.  Identifying parameter by identical synchronization between different systems. , 2004, Chaos.

[21]  Jack J Jiang,et al.  Estimating model parameters by chaos synchronization. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Jinde Cao,et al.  Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. , 2005, Chaos.

[23]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jack J Jiang,et al.  Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization. , 2006, Chaos.

[26]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.