Collaborative correlation filters for real-time tracking with spatial constraint

Accurate scale estimation of the target plays an important role in object tracking. Most state-of-the-art methods estimate the target size by employing an exhaustive scale search. These methods can...

[1]  Changsheng Xu,et al.  Structural Correlation Filter for Robust Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[5]  T. Guan,et al.  Registration Based on Scene Recognition and Natural Features Tracking Techniques for Wide-Area Augmented Reality Systems , 2009, IEEE Transactions on Multimedia.

[6]  Simon Lucey,et al.  Correlation filters with limited boundaries , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[10]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[12]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[13]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[14]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[19]  Wenxiong Kang,et al.  Vision-Based Fingertip Tracking Utilizing Curvature Points Clustering and Hash Model Representation , 2017, IEEE Transactions on Multimedia.

[20]  Rui Caseiro,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence High-speed Tracking with Kernelized Correlation Filters , 2022 .

[21]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[22]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[23]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[24]  Marios Savvides,et al.  Correlation Pattern Recognition for Face Recognition , 2006, Proceedings of the IEEE.

[25]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[26]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[29]  Yueting Zhuang,et al.  DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection , 2015, IEEE Transactions on Image Processing.

[30]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[32]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[33]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[38]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Jenq-Neng Hwang,et al.  On-Road Pedestrian Tracking Across Multiple Driving Recorders , 2015, IEEE Transactions on Multimedia.