A perturbation method for optimization of rigid block mechanisms in the kinematic method of limit analysis

Abstract Collapse mechanisms consisting of sliding rigid blocks are used widely as the basis for computing bounds on limit loads in geotechnical and structural engineering problems. While these mechanisms are conceptually straightforward to analyze, evaluating kinematically admissible velocities for a particular arrangement of blocks can be a tedious process, and optimizing the geometry of the mechanism is often prohibitively cumbersome for more than a few blocks. In this paper, we present a numerical technique for evaluating and optimizing mechanisms composed of an arbitrary number of sliding triangular blocks, assuming plane strain and homogenous, ponderable material obeying the Mohr–Coulomb yield condition. In the proposed method, coordinates defining the vertices of the blocks are treated as unknowns, and the optimal geometry is found by successively perturbing the vertex coordinates and block velocities, starting initially from a user-specified arrangement of blocks. The method is applied to three different examples related to geotechnical engineering, each of which illustrate that the approach is an efficient way to evaluate bounds that are often close to the true limit load.

[1]  Scott W. Sloan,et al.  Bearing capacity of cohesive-frictional soils with multiple tunnels , 2011 .

[2]  G. G. Meyerhof The Ultimate Bearing Capacity of Foudations , 1951 .

[3]  Andrei V. Lyamin,et al.  Discontinuous velocity field for general yield criteria , 2004 .

[4]  Jyant Kumar,et al.  Upper bound limit analysis for finding interference effect of two nearby strip footings on sand , 2007 .

[5]  Radoslaw L. Michalowski,et al.  Three-Dimensional Stability of Slopes and Excavations , 2009 .

[6]  K. Georgiadis An upper-bound solution for the undrained bearing capacity of strip footings at the top of a slope , 2010 .

[7]  David Johnson Yield-line analysis by sequential linear programming , 1995 .

[8]  Alexander M. Puzrin,et al.  New planar velocity fields for upper bound limit analysis , 2003 .

[9]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[10]  Scott W. Sloan,et al.  Numerical limit analysis solutions for the bearing capacity factor Nγ , 2005 .

[11]  Jian-Hua Yin,et al.  Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming , 2003 .

[12]  Walter Tollmien,et al.  Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden , 1961 .

[13]  Radoslaw L. Michalowski,et al.  AN ESTIMATE OF THE INFLUENCE OF SOIL WEIGHT ON BEARING CAPACITY USING LIMIT ANALYSIS , 1997 .

[14]  E. Anderheggen,et al.  Finite element limit analysis using linear programming , 1972 .

[15]  Scott W. Sloan,et al.  Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading , 2011 .

[16]  G. N. Pande Numerical Models in Geomechanics - NUMOG X , 2007 .

[17]  Andrew Drescher,et al.  Approximate model for blunt objects indenting cohesive‐frictional materials , 2012 .

[18]  Joseph Pastor,et al.  New bounds for the height limit of a vertical slope , 2000 .

[19]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[20]  Chris Martin The use of adaptive finite-element limit analysis to reveal slip-line fields , 2011 .

[21]  L. Prandtl,et al.  Hauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden , 1921 .

[22]  Zhang Xiong,et al.  Rigid finite element and limit analysis , 1993 .

[23]  Radoslaw L. Michalowski Displacements of Multiblock Geotechnical Structures Subjected to Seismic Excitation , 2007 .

[24]  Wai-Fah Chen Limit Analysis and Soil Plasticity , 1975 .

[25]  Xiong Zhang,et al.  Slope stability analysis based on the rigid finite element method , 1999 .

[26]  Scott W. Sloan,et al.  Coordinate perturbation method for upper bound limit analysis , 2011 .

[27]  Chris Martin,et al.  Exact bearing capacity calculations using the method of characteristics , 2005 .

[28]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[29]  Scott W. Sloan,et al.  Upper bound limit analysis using finite elements and linear programming , 1989 .

[30]  Gabriele Milani,et al.  A discontinuous quasi-upper bound limit analysis approach with sequential linear programming mesh adaptation , 2009 .

[31]  P. Lourenço,et al.  Three-dimensional limit analysis of rigid blocks assemblages. Part I: Torsion failure on frictional interfaces and limit analysis formulation , 2005 .

[32]  Radoslaw L. Michalowski,et al.  SLOPE STABILITY ANALYSIS: A KINEMATICAL APPROACH , 1995 .

[33]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[34]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[35]  I. M. Longman,et al.  Calculations and measurements on wedge-indentation , 1954 .

[36]  Chris Martin,et al.  Upper bound limit analysis using discontinuous quadratic displacement fields , 2007 .

[37]  Matthew Gilbert,et al.  Application of discontinuity layout optimization to plane plasticity problems , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Chris Martin,et al.  Upper bound limit analysis using simplex strain elements and second‐order cone programming , 2007 .

[39]  Raúl A. Feijóo,et al.  An adaptive approach to limit analysis , 2001 .

[40]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .