APPLICATIONS OF BIPOLAR FUZZY THEORY TO HEMIRINGS

In our real life, bipolar fuzzy theory is a core feature to be considered: positive information represents what is possible or preferred, while negative information represents what is forbidden or surely false. In this paper, we provide a general algebraic framework for handling bipolar information by combining the theory of bipolar fuzzy sets with hemirings. First, we present the concepts of bipolar fuzzy h-ideals and normal bipolar fuzzy h-ideals. Meanwhile, some illustrative examples are given to show the rationality of the definitions introduced in the present paper. Second, the characterizations of bipolar fuzzy h-ideals are investigated by means of positive t-cut, negative s-cut, homomorphism and equivalence relation. Third, we give the range of the values of the non-constant maximal element of all normal bipolar fuzzy h-ideals.

[1]  Yunqiang Yin,et al.  The characterizations of h , 2008, Inf. Sci..

[2]  M. Mathematical,et al.  Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras , 2009 .

[3]  Mee-Kwang Kang,et al.  BIPOLAR FUZZY SET THEORY APPLIED TO SUB-SEMIGROUPS WITH OPERATORS IN SEMIGROUPS , 2012 .

[4]  Vladik Kreinovich,et al.  On Inverse Halftoning : Computational Complexity and Interval Computations , 2005 .

[5]  M. W. Shields An Introduction to Automata Theory , 1988 .

[6]  Jianming Zhan,et al.  A new view of fuzzy k-ideals of hemirings , 2012, J. Intell. Fuzzy Syst..

[7]  Isabelle Bloch,et al.  Mathematical morphology on bipolar fuzzy sets: general algebraic framework , 2012, Int. J. Approx. Reason..

[8]  Jianming Zhan,et al.  Fuzzy h-ideals of hemirings , 2007, Inf. Sci..

[9]  J. Cacioppo,et al.  Beyond Bipolar Conceptualizations and Measures: The Case of Attitudes and Evaluative Space , 1997, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[10]  D. Dubois,et al.  An introduction to bipolar representations of information and preference , 2008 .

[11]  J. Golan Semirings and their applications , 1999 .

[12]  Arsham Borumand Saeid,et al.  Bipolar Fuzzy K-algebras , 2010 .

[13]  Muhammad Akram,et al.  Intuitionistic fuzzy left k-ideals of semirings , 2008, Soft Comput..

[14]  Sébastien Destercke,et al.  A flexible bipolar querying approach with imprecise data and guaranteed results , 2011, Fuzzy Sets Syst..

[15]  Wieslaw A. Dudek,et al.  Special types of intuitionistic fuzzy left h-ideals of hemirings , 2007, Soft Comput..

[16]  W. D. Groot,et al.  Note on the , 1940 .

[17]  Jianming Zhan,et al.  Characterizations of h-intra- and h-quasi-hemiregular hemirings , 2012, Comput. Math. Appl..

[18]  L. Amgoud,et al.  On bipolarity in argumentation frameworks , 2008 .

[19]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[20]  Wieslaw A. Dudek,et al.  Characterizations of hemirings by their h-ideals , 2010, Comput. Math. Appl..

[21]  Yunqiang Yin,et al.  The Characterization of h -semisimple Hemirings , 2009 .

[22]  Kenzo Iizuka,et al.  On the Jacobson radical of a semiring , 1959 .

[23]  H. S. Vandiver,et al.  Note on a simple type of algebra in which the cancellation law of addition does not hold , 1934 .

[24]  Lihua Dong Fuzzy k-ideals in Semirings Redefined , 2002 .

[25]  Rui Da Silva Neves,et al.  Bipolarity in human reasoning and affective decision making , 2008, Int. J. Intell. Syst..