Resistance switching for RRAM applications

Resistive random access memory (RRAM or ReRAM) is a non-volatile memory (NVM) technology that consumes minimal energy while offering sub-nanosecond switching. In addition, the data stability against high temperature and cycling wear is very robust, allowing new NVM applications in a variety of markets (automotive, embedded, storage, RAM). Based on sudden conduction through oxide insulators, the characteristics of RRAM technology have still yet to be fully described. In this paper, we present our current understanding of this very promising technology.

[1]  Frederick T. Chen,et al.  Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance , 2010, 2010 International Electron Devices Meeting.

[2]  C. Lin,et al.  High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  Chang Hua Siau,et al.  A 0.13µm 64Mb multi-layered conductive metal-oxide memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[4]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[5]  E. Garfunkel,et al.  Oxygen exchange and transport in thin zirconia films on Si(100) , 2000 .

[6]  I. Baek,et al.  Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[7]  Qi Liu,et al.  On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt , 2008 .

[8]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[9]  R. Meyer,et al.  Oxide dual-layer memory element for scalable non-volatile cross-point memory technology , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[10]  S. Ferrari,et al.  Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100) , 2004 .

[11]  Jun-ichi Shirakashi,et al.  Control of Tunnel Resistance of Nanogaps by Field-Emission-Induced Electromigration , 2007 .

[12]  K.P. Cheung A physics-based, unified gate-oxide breakdown model , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[13]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[14]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[15]  Yoshihisa Fujisaki,et al.  Resistive Switching Ion-Plug Memory for 32-nm Technology Node and Beyond , 2009 .

[16]  Z. Wei,et al.  Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism , 2008, 2008 IEEE International Electron Devices Meeting.

[17]  Frederick T. Chen,et al.  Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[18]  Heng-Yuan Lee,et al.  Comprehensively study of read disturb immunity and optimal read scheme for high speed HfOx based RRAM with a Ti layer , 2010, Proceedings of 2010 International Symposium on VLSI Technology, System and Application.

[19]  Heng-Yuan Lee,et al.  A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme , 2009, 2009 Symposium on VLSI Circuits.

[20]  Tae Geun Kim,et al.  Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells , 2010 .

[21]  John Robertson,et al.  Extended Frenkel pairs and band alignment at metal-oxide interfaces , 2009 .

[22]  Won-Jong Lee,et al.  Microstructure and Electrical Properties of Tantalum Oxide Thin Film Prepared by Electron Cyclotron Resonance Plasma-Enhanced Chemical Vapor Deposition , 1994 .

[23]  J. P. Remeika,et al.  METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES , 1971 .

[24]  F. Zhuge,et al.  Nonvolatile resistive switching memory based on amorphous carbon , 2010 .

[25]  Yoichi Ando,et al.  Achieving fast oxygen diffusion in perovskites by cation ordering , 2005, cond-mat/0501127.

[26]  Gerhard Müller,et al.  A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control , 2007, IEEE Journal of Solid-State Circuits.

[27]  L. Baldassarre,et al.  Metal-insulator transition in NiS 2 − , 2010 .

[28]  G. Hass,et al.  Optical Properties and Oxidation of Evaporated Titanium Films , 1957 .

[29]  J. Kim,et al.  Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology , 2006, 2006 International Electron Devices Meeting.

[30]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[31]  R. Waser Resistive non-volatile memory devices (Invited Paper) , 2009 .

[32]  Frederick T. Chen,et al.  Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[33]  Sunae Seo,et al.  Study of Transport and Dielectric of Resistive Memory States in NiO Thin Film , 2005 .

[34]  J. Black,et al.  Electromigration—A brief survey and some recent results , 1969 .

[35]  Masakazu Aono,et al.  Resistance Switching in Anodic Oxidized Amorphous TiO2 Films , 2008 .

[36]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[37]  G. Servalli,et al.  A 45nm generation Phase Change Memory technology , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[38]  Ranbir Singh,et al.  Cree Application Note: SiC Power Schottky Diodes in Power Factor Correction Circuits , 2003 .

[39]  Hugh P. McAdams,et al.  An 8Mb 1T1C ferroelectric memory with zero cancellation and micro-granularity redundancy , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[40]  Hyunsang Hwang,et al.  Excellent Resistance Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3 Schottky Junction , 2006, 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop.

[41]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[42]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[43]  M. Kozicki,et al.  Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices , 2010 .

[44]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[45]  Bart J. Kooi,et al.  Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films , 2007 .

[46]  N. Xu,et al.  A unified physical model of switching behavior in oxide-based RRAM , 2008, 2008 Symposium on VLSI Technology.

[47]  P. Gonon,et al.  Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes , 2010 .

[48]  H.-S. Philip Wong,et al.  Ultra-low power Al2O3-based RRAM with 1μA reset current , 2010, Proceedings of 2010 International Symposium on VLSI Technology, System and Application.

[49]  Jae Hyuck Jang,et al.  Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors , 2008, 0802.3739.