Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency.

[1]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[2]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[3]  S. Lodha,et al.  Schottky barrier heights for Au and Pd contacts to MoS2 , 2014 .

[4]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[5]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[6]  A. H. Reshak,et al.  Calculated optical properties of 2 H − MoS 2 intercalated with lithium , 2003 .

[7]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[8]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[9]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[10]  Li Yang,et al.  Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides , 2013, 1306.0620.

[11]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[12]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[13]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[14]  Kaustav Banerjee,et al.  High-performance MoS2 transistors with low-resistance molybdenum contacts , 2014 .

[15]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[16]  Jing Lu,et al.  Monolayer Phosphorene-Metal Interfaces , 2015, 1507.02420.

[17]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[18]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[19]  Madan Dubey,et al.  Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition , 2013 .

[20]  E. Kaxiras,et al.  Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. , 2013, Nano letters.

[21]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[22]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[23]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[24]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[25]  Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes. , 2005, Physical review letters.

[26]  S. Louie,et al.  Renormalization of molecular electronic levels at metal-molecule interfaces. , 2006, Physical Review Letters.

[27]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[28]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[29]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[30]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[33]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[34]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[35]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[36]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[37]  Li Yang,et al.  Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical Review Letters.

[38]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[39]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[40]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[41]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[42]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[43]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[44]  L. Zhen,et al.  Work function modulation of bilayer MoS2 nanoflake by backgate electric field effect , 2013 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[47]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[48]  Jiaxin Zheng,et al.  Tunable and sizable band gap in silicene by surface adsorption , 2012, Scientific Reports.

[49]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[50]  K. Banerjee,et al.  High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance , 2013, 2013 IEEE International Electron Devices Meeting.

[51]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[52]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[53]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[54]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[55]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[56]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[57]  Z. Ni,et al.  Does p-type ohmic contact exist in WSe2-metal interfaces? , 2015, Nanoscale.

[58]  Zhengxiang Gao,et al.  Enhanced many‐body effects in one‐dimensional linear atomic chains , 2013 .

[59]  L. Wirtz,et al.  Excitons in boron nitride nanotubes: dimensionality effects. , 2005, Physical review letters.

[60]  Cheol-Hwan Park,et al.  Self-interaction in Green ’ s-function theory of the hydrogen atom , 2007 .

[61]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[62]  E. Carter,et al.  First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[63]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[64]  J. Brink,et al.  First-principles study of the interaction and charge transfer between graphene and metals , 2009, 0902.1203.

[65]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[66]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[67]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[68]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[69]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[70]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[71]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.