Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO)
暂无分享,去创建一个
Manuel Almeida Valente | A. S. B. Sombra | M. Valente | A. Sombra | P. Fechine | A. F. L. Almeida | Pierre Basílio Almeida Fechine | F.N.A. Freire | H.H.B. Rocha | A. Almeida | R. R. Silva | F.S.A. Cavalcanti | R. S. T. M. Sohn | R. Sohn | F. Freire | H. Rocha | F. Cavalcanti | Francisco Nivaldo Aguiar Freire | A. Sombra | F. Freire | A. Almeida | R.R. Silva | M. Valente
[1] M. Valente,et al. Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range , 2004 .
[2] Jean-Fu Kiang,et al. Novel technologies for microwave and millimeter-wave applications , 2004 .
[3] I. Davidson,et al. Microwave Synthesis of Li1.025Mn1.975 O 4 and Li1 + x Mn2 − x O 4 − y F y ( x = 0.05 , 0.15 ; y = 0.05 , 0.1 ) , 2000 .
[4] M. Gasgnier,et al. Rare earth iron garnets and rare earth iron binary oxides synthesized by microwave monomode , 1998 .
[5] B. Vaidhyanathan,et al. Synthesis of Ti, Ga, and V Nitrides: Microwave-Assisted Carbothermal Reduction and Nitridation† , 1997 .
[6] G. J. McCarthy,et al. JCPDS-International Centre for Diffraction Data , 1981 .
[7] W. Beeré. Inhibition of intergranular cavity growth in precipitate-hardened materials , 1980 .
[8] A. Ganguli,et al. Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12 , 2003 .
[9] B. W. Hakki,et al. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .
[10] B. Vaidhyanathan,et al. A Novel Method of Preparation of Inorganic Glasses by Microwave Irradiation , 1994 .
[11] X. Chen,et al. Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics , 2006 .
[12] P. Ramesh,et al. Microwave‐assisted synthesis of aluminum nitride , 1995 .
[13] Chun-ting Wang,et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics , 2006 .
[14] Hong Wang,et al. Dielectric resonator antennas using high permittivity ceramics , 2004 .
[15] B. Bochu,et al. Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 , 1979 .
[16] H. Ng,et al. Dielectric Resonator Antennas , 2005 .
[17] A. Sombra,et al. BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2006 .
[18] K. Varma,et al. Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics : A comparative study , 2006 .
[19] L. Azároff,et al. Elements of X-ray crystallography , 1968 .
[20] B. Vaidhyanathan,et al. Microwave assisted synthesis of technologically important transition metal silicides , 1997 .
[21] Ahmed A. Kishk,et al. Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode , 1994 .
[22] D. Mingos,et al. Microwave syntheses for superconducting ceramics , 1988, Nature.
[23] Ahmed A. Kishk,et al. Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna , 1994 .
[24] B. Vaidhyanathan,et al. High Microwave Susceptibility of NaH2PO4·2H2O: Rapid Synthesis of Crystalline and Glassy Phosphates with NASICON-Type Chemistry , 1997 .
[25] Thierry Lebey,et al. Dielectric properties of CaCu 3Ti 4O 12 based multiphased ceramics , 2006 .
[26] Ahmed A. Kishk,et al. Computed resonant frequency and far fields of isolated dielectric discs , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.
[27] Stuart A. Long,et al. The resonant cylindrical dielectric cavity antenna , 1983 .
[28] H. Gleiter,et al. Materials with ultrafine microstructures: Retrospectives and perspectives , 1992 .
[29] Liquan Chen,et al. Microwave synthesis of LiCoO2 cathode materials , 1997 .
[30] H. Loye,et al. Microwave Synthesis of Ternary Nitride Materials , 1997 .
[31] A. S. B. Sombra,et al. Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2003 .
[32] J. L. Baptista,et al. DiC12: Magnesium titanate microwave dielectric ceramics , 1992 .
[33] H. Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement , 1967 .
[34] Arthur W. Sleight,et al. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .
[35] Y. Kobayashi,et al. Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method , 1985 .
[36] H. Takizawa,et al. Microwave Synthesis of Yttrium Aluminum Iron Garnet Powder , 2001 .
[37] R. Smith,et al. CaCu3Ti4O12: Low-Temperature Synthesis by Pyrolysis of an Organic Solution , 2006 .
[38] Margaret L. Gardel,et al. Giant dielectric constant response in a copper-titanate , 2000 .
[39] D. Mingos,et al. Microwave-assisted solid-state reactions involving metal powders , 1992 .
[40] J. Jokisaari,et al. Processing of single phase Mo5Si3 by microwave activated combustion synthesis , 2002 .
[41] Kikuo Wakino,et al. Recent development of dielectric resonator materials and filters in Japan , 1989 .
[42] A. Sleight,et al. ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy , 2002 .
[43] B. Vaidhyanathan,et al. Synthesis of β-SiC powder by use of microwave radiation , 1994 .
[44] A. S. B. Sombra,et al. Dielectric relaxation of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures , 2006 .
[45] Y. Koike,et al. Rapid Preparation of YBa 2Cu 3O7-x with T c ∼ 90 K Using a Domestic Microwave Oven , 1997 .
[46] A. G. S. Filho,et al. Structural properties of CaCu3Ti4O12 obtained by mechanical alloying , 2002 .