Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO)

Abstract In this study, the CaCu3Ti4O12 (CCTO) ceramic phase was synthesized by microwave heating in a much shorter time compared to the conventional heating methods. The results indicate that microwave processing is a promising method for preparing CCTO ceramics. CCTO was prepared using a domestic microwave oven operated at 2.45 GHz with 800 W. After a few minutes of microwave irradiation the formation of CCTO was confirmed by X-ray powder diffraction. The CCTO ceramic was studied in the medium-frequency (MF) range (100 Hz–1 MHz) and in the microwave range of frequencies. The experimental and theoretical characteristics of the dielectric resonator antenna are investigated.

[1]  M. Valente,et al.  Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range , 2004 .

[2]  Jean-Fu Kiang,et al.  Novel technologies for microwave and millimeter-wave applications , 2004 .

[3]  I. Davidson,et al.  Microwave Synthesis of Li1.025Mn1.975 O 4 and Li1 + x Mn2 − x O 4 − y F y ( x = 0.05 , 0.15 ; y = 0.05 , 0.1 ) , 2000 .

[4]  M. Gasgnier,et al.  Rare earth iron garnets and rare earth iron binary oxides synthesized by microwave monomode , 1998 .

[5]  B. Vaidhyanathan,et al.  Synthesis of Ti, Ga, and V Nitrides: Microwave-Assisted Carbothermal Reduction and Nitridation† , 1997 .

[6]  G. J. McCarthy,et al.  JCPDS-International Centre for Diffraction Data , 1981 .

[7]  W. Beeré Inhibition of intergranular cavity growth in precipitate-hardened materials , 1980 .

[8]  A. Ganguli,et al.  Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12 , 2003 .

[9]  B. W. Hakki,et al.  A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .

[10]  B. Vaidhyanathan,et al.  A Novel Method of Preparation of Inorganic Glasses by Microwave Irradiation , 1994 .

[11]  X. Chen,et al.  Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics , 2006 .

[12]  P. Ramesh,et al.  Microwave‐assisted synthesis of aluminum nitride , 1995 .

[13]  Chun-ting Wang,et al.  Microstructure and electrical properties of CaCu3Ti4O12 ceramics , 2006 .

[14]  Hong Wang,et al.  Dielectric resonator antennas using high permittivity ceramics , 2004 .

[15]  B. Bochu,et al.  Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 , 1979 .

[16]  H. Ng,et al.  Dielectric Resonator Antennas , 2005 .

[17]  A. Sombra,et al.  BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2006 .

[18]  K. Varma,et al.  Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics : A comparative study , 2006 .

[19]  L. Azároff,et al.  Elements of X-ray crystallography , 1968 .

[20]  B. Vaidhyanathan,et al.  Microwave assisted synthesis of technologically important transition metal silicides , 1997 .

[21]  Ahmed A. Kishk,et al.  Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode , 1994 .

[22]  D. Mingos,et al.  Microwave syntheses for superconducting ceramics , 1988, Nature.

[23]  Ahmed A. Kishk,et al.  Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna , 1994 .

[24]  B. Vaidhyanathan,et al.  High Microwave Susceptibility of NaH2PO4·2H2O: Rapid Synthesis of Crystalline and Glassy Phosphates with NASICON-Type Chemistry , 1997 .

[25]  Thierry Lebey,et al.  Dielectric properties of CaCu 3Ti 4O 12 based multiphased ceramics , 2006 .

[26]  Ahmed A. Kishk,et al.  Computed resonant frequency and far fields of isolated dielectric discs , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[27]  Stuart A. Long,et al.  The resonant cylindrical dielectric cavity antenna , 1983 .

[28]  H. Gleiter,et al.  Materials with ultrafine microstructures: Retrospectives and perspectives , 1992 .

[29]  Liquan Chen,et al.  Microwave synthesis of LiCoO2 cathode materials , 1997 .

[30]  H. Loye,et al.  Microwave Synthesis of Ternary Nitride Materials , 1997 .

[31]  A. S. B. Sombra,et al.  Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2003 .

[32]  J. L. Baptista,et al.  DiC12: Magnesium titanate microwave dielectric ceramics , 1992 .

[33]  H. Rietveld Line profiles of neutron powder-diffraction peaks for structure refinement , 1967 .

[34]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[35]  Y. Kobayashi,et al.  Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method , 1985 .

[36]  H. Takizawa,et al.  Microwave Synthesis of Yttrium Aluminum Iron Garnet Powder , 2001 .

[37]  R. Smith,et al.  CaCu3Ti4O12: Low-Temperature Synthesis by Pyrolysis of an Organic Solution , 2006 .

[38]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[39]  D. Mingos,et al.  Microwave-assisted solid-state reactions involving metal powders , 1992 .

[40]  J. Jokisaari,et al.  Processing of single phase Mo5Si3 by microwave activated combustion synthesis , 2002 .

[41]  Kikuo Wakino,et al.  Recent development of dielectric resonator materials and filters in Japan , 1989 .

[42]  A. Sleight,et al.  ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy , 2002 .

[43]  B. Vaidhyanathan,et al.  Synthesis of β-SiC powder by use of microwave radiation , 1994 .

[44]  A. S. B. Sombra,et al.  Dielectric relaxation of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures , 2006 .

[45]  Y. Koike,et al.  Rapid Preparation of YBa 2Cu 3O7-x with T c ∼ 90 K Using a Domestic Microwave Oven , 1997 .

[46]  A. G. S. Filho,et al.  Structural properties of CaCu3Ti4O12 obtained by mechanical alloying , 2002 .