The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study.

The diffusion of nanoparticles (NPs) in polymer solutions is studied by a combination of a mesoscale simulation method, multiparticle collision dynamics (MPCD), and molecular dynamics (MD) simulations. We investigate the long-time diffusion coefficient D as well as the subdiffusive behavior in the intermediate time region. The dependencies of both D and subdiffusion factor α on NP size and polymer concentration, respectively, are explicitly calculated. Particular attention is paid to the role of hydrodynamic interaction (HI) in the NP diffusion dynamics. Our simulation results show that the long-time diffusion coefficients satisfy perfectly the scaling relation found by experimental observations. Meanwhile, the subdiffusive factor decreases with the increase in polymer concentration but is of little relevance to the NP size. By parallel simulations with and without HI, we reveal that HI will generally enhance D, while the enhancement effect is non-monotonous with increasing polymer concentration, and it becomes most pronounced at semidilute concentrations. With the aid of a scaling law based on the diffusive activation energy model, we understand that HI affects diffusion through decreasing the diffusive activation energy on the one hand while increasing the effective diffusion size on the other. In addition, HI will certainly influence the subdiffusive behavior of the NP, leading to a larger subdiffusion exponent.

[1]  J. V. D. Maarel,et al.  Compaction of Plasmid DNA by Macromolecular Crowding , 2017 .

[2]  K. Schweizer,et al.  Theory of nanoparticle diffusion in unentangled and entangled polymer melts. , 2011, The Journal of chemical physics.

[3]  Gerhard Gompper,et al.  Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations , 2010, J. Comput. Phys..

[4]  F. Horkay,et al.  Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy. , 2007, Biomacromolecules.

[5]  Z. Hou,et al.  Diffusion of nanoparticles in semidilute polymer solutions: A mode-coupling theory study. , 2015, The Journal of chemical physics.

[6]  R. Winkler,et al.  Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids , 2008, 0808.2157.

[7]  Gideon Schreiber,et al.  Protein-protein association in polymer solutions: from dilute to semidilute to concentrated. , 2007, Biophysical journal.

[8]  Yijing Yan,et al.  Langevin dynamics of correlated subdiffusion and normal diffusion. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  C. Grabowski,et al.  Dynamics of gold nanoparticles in a polymer melt , 2009 .

[10]  Ruhong Zhou,et al.  Hydrophobic Collapse in Multidomain Protein Folding , 2004, Science.

[11]  S. Granick,et al.  Modeling diffusion of adsorbed polymer with explicit solvent. , 2007, Physical review letters.

[12]  Tomasz Kalwarczyk,et al.  Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow. , 2013, Physical review letters.

[13]  Douglas E. Smith,et al.  Onset of Non-Continuum Effects in Microrheology of Entangled Polymer Solutions , 2014 .

[14]  K. Schweizer,et al.  Microscopic Theory of the Long-Time Diffusivity and Intermediate-Time Anomalous Transport of a Nanoparticle in Polymer Melts , 2015 .

[15]  W. Hamilton,et al.  Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment. , 2017, Physical Review Letters.

[16]  T Ihle,et al.  Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[18]  S. Egorov Anomalous nanoparticle diffusion in polymer solutions and melts: a mode-coupling theory study. , 2011, The Journal of chemical physics.

[19]  Gerhard Gompper,et al.  Synchronization and bundling of anchored bacterial flagella , 2012 .

[20]  M. Weiss,et al.  Elucidating the origin of anomalous diffusion in crowded fluids. , 2009, Physical review letters.

[21]  J. Theriot,et al.  Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm , 2010 .

[22]  S. Sacanna,et al.  Rotational and translational diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  H. Eyring,et al.  Diffusion, Thermal Conductivity, and Viscous Flow of Liquids , 1941 .

[24]  J. Kirkwood,et al.  Errata: The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution , 1948 .

[25]  Allen P. Minton,et al.  Cell biology: Join the crowd , 2003, Nature.

[26]  T Ihle,et al.  Transport coefficients for stochastic rotation dynamics in three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  G Gompper,et al.  Dynamic regimes of fluids simulated by multiparticle-collision dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[29]  P. Flory Principles of polymer chemistry , 1953 .

[30]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[31]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[32]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[33]  Z. Hou,et al.  Understanding Protein Diffusion in Polymer Solutions: A Hydration with Depletion Model. , 2016, The journal of physical chemistry. B.

[34]  R. Winkler,et al.  Hydrodynamic screening of star polymers in shear flow , 2007, The European physical journal. E, Soft matter.

[35]  R. Kapral,et al.  Molecular theory of translational diffusion: Microscopic generalization of the normal velocity boundary condition , 1979 .

[36]  B. Berne,et al.  Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains , 2008, 0810.2049.

[37]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[38]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[40]  M. Krüger,et al.  Diffusion of a sphere in a dilute solution of polymer coils. , 2009, The Journal of chemical physics.

[41]  W. Saltzman,et al.  Drug delivery: Stealth particles give mucus the slip. , 2009, Nature materials.

[42]  Z. Hou,et al.  Diffusion of Nanoparticles in Semidilute Polymer Solutions: A Multiparticle Collision Dynamics Study , 2016 .

[43]  R. Winkler,et al.  Role of fluid-density correlations in hydrodynamics: a multiparticle collision dynamics simulation study , 2012 .

[44]  S. Narayanan,et al.  Nanorod Mobility within Entangled Wormlike Micelle Solutions , 2017 .

[45]  Craig J Hawker,et al.  General Strategies for Nanoparticle Dispersion , 2006, Science.

[46]  G. Phillies Dynamics of polymers in concentrated solutions: the universal scaling equation derived , 1987 .

[47]  Marcin Tabaka,et al.  Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model. , 2015, Advances in colloid and interface science.

[48]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[49]  Polymer collapse in the presence of hydrodynamic interactions , 2002, The European physical journal. E, Soft matter.

[50]  R. Tuinier,et al.  Scaling of nanoparticle retardation in semi-dilute polymer solutions. , 2008, Soft matter.

[51]  R. Winkler,et al.  Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study. , 2014, Soft matter.

[52]  V. Ganesan,et al.  Noncontinuum effects on the mobility of nanoparticles in unentangled polymer solutions , 2016 .

[53]  A. Mukhopadhyay,et al.  Diffusion of Nanoparticles in Semidilute Polymer Solutions: Effect of Different Length Scales , 2012 .

[54]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[55]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[56]  V. Ganesan,et al.  Noncontinuum effects in nanoparticle dynamics in polymers. , 2006, The Journal of chemical physics.

[57]  J. Padding,et al.  Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  David Chandler,et al.  Fluctuations of water near extended hydrophobic and hydrophilic surfaces. , 2009, The journal of physical chemistry. B.

[59]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[60]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  R. Kapral,et al.  Molecular crowding and protein enzymatic dynamics. , 2012, Physical chemistry chemical physics : PCCP.

[62]  A. Aneese,et al.  Diffusion of nanoparticles in semidilute and entangled polymer solutions. , 2009, Journal of Physical Chemistry B.

[63]  Jacinta C. Conrad,et al.  Mobility of Nanoparticles in Semidilute Polyelectrolyte Solutions , 2014 .

[64]  M. Fiałkowski,et al.  Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer , 2011 .

[65]  Zhong-yuan Lu,et al.  Note: Chain length dependent nanoparticle diffusion in polymer melt: Effect of nanoparticle softness. , 2016, The Journal of chemical physics.

[66]  J. Conrad,et al.  Size-Dependent Dynamics of Nanoparticles in Unentangled Polyelectrolyte Solutions. , 2015, ACS macro letters.

[67]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[68]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.

[69]  Suresh Narayanan,et al.  Breakdown of the continuum stokes-einstein relation for nanoparticle diffusion. , 2007, Nano letters.

[70]  B. Berne,et al.  Dewetting-induced collapse of hydrophobic particles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Gerhard Gompper,et al.  From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study. , 2016, Physical review. E.

[72]  J. Hynes Statistical Mechanics of Molecular Motion in Dense Fluids , 1977 .

[73]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[74]  E. Westphal,et al.  Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations , 2014, Comput. Phys. Commun..

[75]  T. Ihle,et al.  Erratum: Multi-particle collision dynamics: Flow around a circular and a square cylinder , 2001, cond-mat/0110148.

[76]  A. Elcock,et al.  Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins. , 2009, Journal of chemical theory and computation.

[77]  Tomasz Kalwarczyk,et al.  Scaling Equation for Viscosity of Polymer Mixtures in Solutions with Application to Diffusion of Molecular Probes , 2017 .

[78]  Jeffrey Skolnick,et al.  Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion , 2010, Proceedings of the National Academy of Sciences.

[79]  Mark Sutton,et al.  Entanglement-controlled subdiffusion of nanoparticles within concentrated polymer solutions. , 2012, Physical review letters.

[80]  M. Tabaka,et al.  Scaling form of viscosity at all length-scales in poly(ethylene glycol) solutions studied by fluorescence correlation spectroscopy and capillary electrophoresis. , 2009, Physical chemistry chemical physics : PCCP.

[81]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[82]  H. Butt,et al.  Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. , 2011, Nano letters.

[83]  J. Erpenbeck,et al.  Statistical Mechanics of Irreversible Processes in Polymer Solutions , 1958 .

[84]  Gerhard Gompper,et al.  Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: a multiparticle collision dynamics study. , 2013, The Journal of chemical physics.

[85]  J. Klafter,et al.  Probing microscopic origins of confined subdiffusion by first-passage observables , 2008, Proceedings of the National Academy of Sciences.

[86]  J. Enderlein,et al.  Scaling of activation energy for macroscopic flow in poly(ethylene glycol) solutions: Entangled – Non-entangled crossover , 2014 .

[87]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .