Quantum mechanics of small Ne, Ar, Kr, and Xe clusters

We compute energy levels and wave functions of Ne, Ar, Kr, and Xe trimers, modeled by pairwise Lennard‐Jones potentials, using the discrete variable representation (DVR) and the successive diagonalization‐truncation method. For the Ne and Ar trimers, we find that almost all of the energy levels lie above the energy required classically to achieve a collinear configuration. For the Kr and Xe trimers, we are able to determine a number of energy levels both below the classical transition energy as well as above it. Energy level statistics for these heavier clusters reveal behavior that correlates well with classical chaotic behavior that has previously been observed above the transition energy. The eigenfunctions of these clusters show a wide variety of behavior ranging from very regular behavior for low lying eigenstates to a combination of regular and irregular behavior at energies above the transition energy. These results, along with quantum Monte Carlo calculations of the ground states for a variety of ...

[1]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[2]  J. Light,et al.  Localized representations for large amplitude molecular vibrations , 1988 .

[3]  L. Halonen,et al.  Overtone Frequencies and Intensities in the Local Mode Picture , 2007 .

[4]  J. D. Boer Quantum theory of condensed permanent gases I the law of corresponding states , 1948 .

[5]  David J. Wales,et al.  Exploring potential energy surfaces with transition state calculations , 1990 .

[6]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[7]  Frederick R. W. McCourt,et al.  A new determination of the ground state interatomic potential for He2 , 1987 .

[8]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  D. Wales Balanced geometrics and structural trends in covalent, ionic, and van der Waals clusters , 1990 .

[10]  Clyde L. Briant,et al.  Molecular dynamics study of the structure and thermodynamic properties of argon microclusters , 1975 .

[11]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[12]  S. Rick,et al.  Density functional theory of freezing for quantum systems. II. Application to helium , 1990 .

[13]  Thomas L. Beck,et al.  The interplay of structure and dynamics in the melting of small clusters , 1988 .

[14]  Klein,et al.  Path-integral Monte Carlo study of low-temperature 4He clusters. , 1989, Physical review letters.

[15]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  J. Light,et al.  Symmetry‐adapted discrete variable representations , 1988 .

[17]  J. Tennyson,et al.  Highly excited rovibrational states using a discrete variable representation: The H+3 molecular ion , 1989 .

[18]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[19]  Thomas L. Beck,et al.  Melting and phase space transitions in small clusters: Spectral characteristics, dimensions, and K entropy , 1988 .

[20]  J. Doll,et al.  Equilibrium and dynamical Fourier path integral methods , 2007 .

[21]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[22]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[23]  L. Cederbaum,et al.  On the statistical behaviour of molecular vibronic energy levels , 1983 .

[24]  J. Light,et al.  Adiabatic approximation and nonadiabatic corrections in the discrete variable representation: Highly excited vibrational states of triatomic molecules , 1987 .

[25]  S. Fishman,et al.  Statistics of quasienergies in chaotic and random systems , 1987 .

[26]  K. B. Whaley,et al.  Wave functions of helium clusters , 1990 .

[27]  J. D. Doll,et al.  The quantum mechanics of cluster melting , 1989 .

[28]  D. Leitner,et al.  Quantum chaos of Ar3: Statistics of eigenvalues , 1989 .

[29]  J. Cashion Simple Formulas for the Vibrational and Rotational Eigenvalues of the Lennard‐Jones 12‐6 Potential , 1968 .