Taxonomy of interpolation constraints on recursive subdivision curves

This paper is the first of two, which together describe and classify the various situations that any complete study of interpolation constraints for a recursive subdivision surface needs to consider. They do so in the form of a systematic taxonomy of situations. Presented here are curve cases, which provide good illustrations of principles which will be used in both contexts; surfaces will be addressed in the second paper. Known results are classified and open questions identified.

[1]  Adi Levin,et al.  Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.

[2]  Jörg Peters,et al.  Smooth free-form surfaces over irregular meshes generalizing quadratic splines , 1993, Comput. Aided Geom. Des..

[3]  Ahmad H. Nasri,et al.  A four-sided approach for interpolating B-spline curves by subdivision surfaces , 1998, The Visual Computer.

[4]  Adi Levin Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..

[5]  Charles T. Loop,et al.  Smooth spline surfaces over irregular meshes , 1994, SIGGRAPH.

[6]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[7]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[8]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[9]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[10]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[11]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[12]  Ahmad H. Nasri,et al.  Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design , 2000, Comput. Aided Geom. Des..

[13]  J. Peters,et al.  Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .

[14]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[15]  Ahmad H. Nasri Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces , 2001, Comput. Aided Des..

[16]  Ahmad H. Nasri,et al.  Boundary-corner control in recursive-subdivision surfaces , 1991, Comput. Aided Des..

[17]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[18]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[19]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[20]  Ahmad H. Nasri,et al.  Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..

[21]  John A. Gregory,et al.  Nonuniform corner cutting , 1996, Comput. Aided Geom. Des..

[22]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[23]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[24]  D. Levin,et al.  Uniform subdivision algorithms for curves and surfaces , 1988 .

[25]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[26]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[27]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[28]  R. Riesenfeld On Chaikin's algorithm , 1975 .

[29]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[30]  Ayman Wadie Habib Three approaches to building curves and surfaces in computer-aided geometric design , 1997 .

[31]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[32]  Ahmad H. Nasri,et al.  Curve interpolation in recursively generated B-spline surfaces over arbitrary topology , 1997, Comput. Aided Geom. Des..