Graph signature for self-reconfiguration planning

This project incorporates modular robots as building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection / disconnection of modules and rotations of the degrees of freedom. This paper introduces a new approach to self-reconfiguration planning for modular robots based on the graph signature and the graph edit-distance. The method has been tested in simulation on two type of modules: YaMoR and M-TRAN. The simulation results shows interesting features of the approach, namely rapidly finding a near-optimal solution.

[1]  Sergei Vassilvitskii,et al.  On the general reconfiguration problem for expanding cube style modular robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[2]  Yuzuru Terada,et al.  Distributed Metamorphosis Control of a Modular Robotic System M-TRAN , 2006, DARS.

[3]  Peter Willett,et al.  RASCAL: Calculation of Graph Similarity using Maximum Common Edge Subgraphs , 2002, Comput. J..

[4]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[5]  Henrik Hautop Lund,et al.  Evolving control for modular robotic units , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[6]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[7]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[8]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[10]  Mark H. Yim,et al.  Evolution of PolyBot: A Modular Reconfigurable Robot , 2002 .

[11]  Arancha Casal,et al.  Connectivity planning for closed-chain reconfiguration , 2000, SPIE Optics East.

[12]  Horst Bunke,et al.  Optimal quadratic-time isomorphism of ordered graphs , 1999, Pattern Recognit..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Wei-Min Shen,et al.  Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms , 2004, Auton. Robots.

[15]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[16]  Andres Upegui,et al.  Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with Bluetooth interface , 2006, Ind. Robot.

[17]  Norbert A. Streitz,et al.  Roomware: Toward the Next Generation of Human- Computer Interaction Based on an Integrated Design of Real and Virtual Worlds , 2001 .

[18]  Sergi Jordà,et al.  The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces , 2007, TEI.

[19]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[20]  Arancha Casal,et al.  Self-reconfiguration planning for a class of modular robots , 1999, Optics East.

[21]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[22]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[23]  K. Tomita,et al.  A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments , 2002 .

[24]  Ronald Azuma,et al.  Recent Advances in Augmented Reality , 2001, IEEE Computer Graphics and Applications.

[25]  Eiichi Yoshida,et al.  A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments , 2002 .