Entanglement boosts quantum turbo codes

One of the unexpected breakdowns in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for a quantum turbo code to have an unbounded minimum distance and for its iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm gives a theoretical and simulated “turbo boost” to these codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties, and simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 5.5 dB beyond that of standard quantum turbo codes. Entanglement is the resource that enables a convolutional encoder to satisfy both properties because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. Simulation results demonstrate that interleaved serial concatenation of EAQ convolutional encoders leads to a powerful code construction with excellent performance on a memoryless depolarizing channel.

[1]  S. S. Pietrobon,et al.  Interleaver design for turbo codes , 1994 .

[2]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[3]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[4]  Mark M. Wilde,et al.  Entanglement generation with a quantum channel and a shared state , 2009, 2010 IEEE International Symposium on Information Theory.

[5]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[6]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[7]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[8]  P. Shor,et al.  Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.

[9]  V. Sidoravicius,et al.  New Trends in Mathematical Physics , 2009 .

[10]  A J Viterbi,et al.  Interleaved concatenated codes: new perspectives on approaching the Shannon limit. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[12]  Mark M. Wilde,et al.  Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Jesse Fern Correctable noise of quantum-error-correcting codes under adaptive concatenation , 2008 .

[14]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[16]  N. J. A. Sloane,et al.  Interleaver design for turbo codes , 2001, IEEE J. Sel. Areas Commun..

[17]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[18]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[19]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[20]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[21]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[22]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[23]  T. Brun,et al.  Entanglement increases the error-correcting ability of quantum error-correcting codes , 2010, 1008.2598.

[24]  Mark M. Wilde,et al.  Quantum convolutional coding with shared entanglement: general structure , 2008, Quantum Inf. Process..

[25]  Jean-Pierre Tillich,et al.  Trellises for stabilizer codes: Definition and uses , 2006 .

[26]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[27]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[28]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[29]  Vladimir D. Tonchev,et al.  Entanglement-assisted quantum low-density parity-check codes , 2010, ArXiv.

[30]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[31]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[32]  Monireh Houshmand,et al.  Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes , 2010, ArXiv.

[33]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[34]  Mark M. Wilde,et al.  The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..

[35]  Mark M. Wilde,et al.  Extra shared entanglement reduces memory demand in quantum convolutional coding , 2009 .

[36]  David Poulin,et al.  Quantum serial turbo codes , 2009, IEEE Trans. Inf. Theory.

[37]  Andrew J. Viterbi,et al.  Convolutional Codes and Their Performance in Communication Systems , 1971 .

[38]  K. Birgitta Whaley,et al.  Lower bounds on the nonzero capacity of Pauli channels , 2008 .

[39]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[40]  Raymond Laflamme,et al.  Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .

[41]  M. Wilde Quantum Shift Register Circuits , 2009, 0903.3894.

[42]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[43]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[44]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[45]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[46]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[47]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[48]  Rolf Johannesson,et al.  A fast algorithm for computing distance spectrum of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[49]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[50]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[51]  Mark M. Wilde,et al.  Minimal-Memory Requirements for Pearl-Necklace Encoders of Quantum Convolutional Codes , 2010, IEEE Transactions on Computers.

[52]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[53]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[54]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[55]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[56]  David Fattal,et al.  Nonlocal quantum information in bipartite quantum error correction , 2009, Quantum Inf. Process..

[57]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[58]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[59]  Hideki Imai,et al.  Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.

[60]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[61]  David Poulin Optimal and efficient decoding of concatenated quantum block codes , 2006 .

[62]  Min-Hsiu Hsieh,et al.  Classical Enhancement of Quantum Error-Correcting Codes , 2008, 0802.2414.

[63]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[64]  Daniel A. Lidar,et al.  Encoding one logical qubit into six physical qubits , 2008, 0803.1495.

[65]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[66]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[67]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[68]  Branka Vucetic,et al.  Combined turbo codes and interleaver design , 1999, IEEE Trans. Commun..

[69]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[70]  Robert J. McEliece,et al.  Coding theorems for turbo code ensembles , 2002, IEEE Trans. Inf. Theory.