Entanglement boosts quantum turbo codes
暂无分享,去创建一个
[1] S. S. Pietrobon,et al. Interleaver design for turbo codes , 1994 .
[2] Robert J. McEliece,et al. The Theory of Information and Coding , 1979 .
[3] Michal Horodecki,et al. A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..
[4] Mark M. Wilde,et al. Entanglement generation with a quantum channel and a shared state , 2009, 2010 IEEE International Symposium on Information Theory.
[5] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[6] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[7] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[8] P. Shor,et al. Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.
[9] V. Sidoravicius,et al. New Trends in Mathematical Physics , 2009 .
[10] A J Viterbi,et al. Interleaved concatenated codes: new perspectives on approaching the Shannon limit. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[11] Aram W. Harrow,et al. A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[12] Mark M. Wilde,et al. Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.
[13] Jesse Fern. Correctable noise of quantum-error-correcting codes under adaptive concatenation , 2008 .
[14] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] Markus Grassl,et al. Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.
[16] N. J. A. Sloane,et al. Interleaver design for turbo codes , 2001, IEEE J. Sel. Areas Commun..
[17] Gilles Zémor,et al. Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.
[18] P. Shor,et al. QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.
[19] Martin Rötteler,et al. Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[20] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[21] Mark M. Wilde,et al. Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.
[22] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[23] T. Brun,et al. Entanglement increases the error-correcting ability of quantum error-correcting codes , 2010, 1008.2598.
[24] Mark M. Wilde,et al. Quantum convolutional coding with shared entanglement: general structure , 2008, Quantum Inf. Process..
[25] Jean-Pierre Tillich,et al. Trellises for stabilizer codes: Definition and uses , 2006 .
[26] Garry Bowen. Entanglement required in achieving entanglement-assisted channel capacities , 2002 .
[27] Sergio Benedetto,et al. Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.
[28] Andreas J. Winter,et al. A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.
[29] Vladimir D. Tonchev,et al. Entanglement-assisted quantum low-density parity-check codes , 2010, ArXiv.
[30] Debbie W. Leung,et al. Quantum data hiding , 2002, IEEE Trans. Inf. Theory.
[31] D. Poulin. Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.
[32] Monireh Houshmand,et al. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes , 2010, ArXiv.
[33] David Poulin,et al. Operator quantum error correction , 2006, Quantum Inf. Comput..
[34] Mark M. Wilde,et al. The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..
[35] Mark M. Wilde,et al. Extra shared entanglement reduces memory demand in quantum convolutional coding , 2009 .
[36] David Poulin,et al. Quantum serial turbo codes , 2009, IEEE Trans. Inf. Theory.
[37] Andrew J. Viterbi,et al. Convolutional Codes and Their Performance in Communication Systems , 1971 .
[38] K. Birgitta Whaley,et al. Lower bounds on the nonzero capacity of Pauli channels , 2008 .
[39] Mark M. Wilde,et al. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.
[40] Raymond Laflamme,et al. Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .
[41] M. Wilde. Quantum Shift Register Circuits , 2009, 0903.3894.
[42] Ke Li,et al. A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[43] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[44] Jean-Pierre Tillich,et al. A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.
[45] Igor Devetak,et al. Correcting Quantum Errors with Entanglement , 2006, Science.
[46] Alain Glavieux,et al. Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .
[47] J. Smolin,et al. Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.
[48] Rolf Johannesson,et al. A fast algorithm for computing distance spectrum of convolutional codes , 1989, IEEE Trans. Inf. Theory.
[49] R. Urbanke,et al. On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[50] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[51] Mark M. Wilde,et al. Minimal-Memory Requirements for Pearl-Necklace Encoders of Quantum Convolutional Codes , 2010, IEEE Transactions on Computers.
[52] Jean-Pierre Tillich,et al. Description of a quantum convolutional code. , 2003, Physical review letters.
[53] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[54] P. Shor,et al. The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.
[55] Hideki Imai,et al. Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.
[56] David Fattal,et al. Nonlocal quantum information in bipartite quantum error correction , 2009, Quantum Inf. Process..
[57] I. Devetak,et al. Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.
[58] Gilles Zémor,et al. Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.
[59] Hideki Imai,et al. Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.
[60] Dariush Divsalar,et al. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.
[61] David Poulin. Optimal and efficient decoding of concatenated quantum block codes , 2006 .
[62] Min-Hsiu Hsieh,et al. Classical Enhancement of Quantum Error-Correcting Codes , 2008, 0802.2414.
[63] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[64] Daniel A. Lidar,et al. Encoding one logical qubit into six physical qubits , 2008, 0803.1495.
[65] Ashish V. Thapliyal,et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.
[66] Panos Aliferis,et al. Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.
[67] Mark M. Wilde,et al. Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.
[68] Branka Vucetic,et al. Combined turbo codes and interleaver design , 1999, IEEE Trans. Commun..
[69] David Poulin,et al. Unified and generalized approach to quantum error correction. , 2004, Physical review letters.
[70] Robert J. McEliece,et al. Coding theorems for turbo code ensembles , 2002, IEEE Trans. Inf. Theory.