Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters

This paper focuses on the adaptive modified hybrid function projective synchronization with complex function transformation matrix (CMHFPS) for different dimensional chaotic (hyperchaotic) systems with complex variables and unknown complex parameters. The chaotic systems are considerably different from those in the existing closely related literature. Moreover, the transformation matrix in this type of chaos synchronization is not a square matrix, and its elements are complex functions. In particular, by constructing appropriate Lyapunov functions dependent on complex variables, the adaptive controllers are designed to synchronize different dimensional complex chaos (hyperchaos) with complex parameters in the sense of CMHFPS, and the complex update laws for estimating unknown complex parameters of complex chaotic systems are also given. Finally, two examples are presented to illustrate the effectiveness and feasibility of the theoretical results.

[1]  Livija Cveticanin,et al.  Resonant vibrations of nonlinear rotors , 1995 .

[2]  T. Bountis,et al.  Dynamical properties and synchronization of complex non-linear equations for detuned lasers , 2009 .

[3]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[4]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[5]  Shuang Liu,et al.  Second-order terminal sliding mode control for networks synchronization , 2014, Nonlinear Dynamics.

[6]  Tassos Bountis,et al.  The Dynamics of Systems of Complex Nonlinear oscillators: a Review , 2004, Int. J. Bifurc. Chaos.

[7]  Emad E. Mahmoud,et al.  Synchronization and control of hyperchaotic complex Lorenz system , 2010, Math. Comput. Simul..

[8]  Fangfang Zhang,et al.  Complex function projective synchronization of complex chaotic system and its applications in secure communication , 2013, Nonlinear Dynamics.

[9]  Jack J Jiang,et al.  Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations. , 2008, Journal of sound and vibration.

[10]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[11]  Chunhua Yuan,et al.  Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters , 2015 .

[12]  Gamal M. Mahmoud,et al.  BASIC PROPERTIES AND CHAOTIC SYNCHRONIZATION OF COMPLEX LORENZ SYSTEM , 2007 .

[13]  Mark J. McGuinness,et al.  The real and complex Lorenz equations in rotating fluids and lasers , 1982 .

[14]  Shutang Liu,et al.  A Novel Four-Wing Hyperchaotic Complex System and Its Complex Modified Hybrid Projective Synchronization with Different Dimensions , 2014 .

[15]  Li-Qun Chen,et al.  Projective lag synchronization of spatiotemporal chaos via active sliding mode control , 2012 .

[16]  H. Moon,et al.  Transitions to chaos in the Ginzburg-Landau equation , 1983 .

[17]  Emad E. Mahmoud,et al.  Dynamics and synchronization of new hyperchaotic complex Lorenz system , 2012, Math. Comput. Model..

[18]  Ping Liu,et al.  Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters , 2011 .

[19]  R. Dilão,et al.  Nonlinear Dynamics in Particle Accelerators , 1997 .

[20]  Emad E. Mahmoud,et al.  On the hyperchaotic complex Lü system , 2009 .

[21]  Tassos Bountis,et al.  Active Control and Global Synchronization of the Complex Chen and lÜ Systems , 2007, Int. J. Bifurc. Chaos.

[22]  G. Mahmoud,et al.  Lag synchronization of hyperchaotic complex nonlinear systems , 2012 .

[23]  V. A. Rozhanskiĭ Transport phenomena in partially ionized plasma , 2001 .

[24]  G. J. M. Maree,et al.  Slow Periodic Crossing of a Pitchfork Bifurcation in an Oscillating System , 1997 .

[25]  Chao Luo,et al.  Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification , 2013, J. Frankl. Inst..

[26]  Guanrong Chen,et al.  Synchronization of a network coupled with complex-variable chaotic systems. , 2012, Chaos.

[27]  Emad E. Mahmoud,et al.  Complex modified projective synchronization of two chaotic complex nonlinear systems , 2013 .

[28]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[29]  Xiangjun Wu,et al.  An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system , 2015, Appl. Math. Comput..

[30]  V. Rozhansky,et al.  Transport Phenomena in Partially Ionized Plasma , 2001 .

[31]  Mark J. McGuinness,et al.  The real and complex Lorenz equations and their relevance to physical systems , 1983 .

[32]  Xiang Li,et al.  Adaptive modified function projective synchronization of general uncertain chaotic complex systems , 2012 .

[33]  Guangzhao Cui,et al.  Combination complex synchronization of three chaotic complex systems , 2015 .

[34]  Fangfang Zhang,et al.  Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos , 2013 .