Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 °C

Abstract The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 25 °C in batch and stirred flow-through reactors over the pH range of 1–13.5, in KNO3 solutions. Dissolution rates were obtained based on the release of Si and Al at steady-state under far from equilibrium conditions. Dissolution was non-stoichiometric between pH 5 and 10, due to adsorption/precipitation of Al. Dissolution rates computed from batch and flow-through experiments were consistent, irrespective of the Si and Al concentrations. Sample pre-treatment and the interlayer cation do not affect the steady-state dissolution rate or stoichiometry of cation release. The rate dependence on pH can be described by: R ( molm - 2 s - 1 ) = 10 - 12.30 a H + 0.40 + 10 - 14.37 + 10 - 13.05 a OH - 0.27 The experimental results are consistent with a dissolution mechanism involving inward movement of a dissolution front from crystal edges. Consequently, normalization of the dissolution rates should take into account the reactive surface located on the smectite edges.

[1]  Lei Chou,et al.  Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor , 1984 .

[2]  M. McBride Chemistry of Clays and Clay Minerals , 1988 .

[3]  Lei Chou,et al.  Steady-state kinetics and dissolution mechanisms of albite , 1985 .

[4]  A. Lasaga,et al.  Dissolution and precipitation kinetics of kaolinite at 80 degrees C and pH 3; the dependence on solution saturation state , 1991 .

[5]  R. Berner,et al.  Mechanism of pyroxene and amphibole weathering-I. Experimental studies of iron-free minerals , 1981 .

[6]  G. Brown,et al.  The chemical constitution of clays. , 1987 .

[7]  G. R. Holdren,et al.  Mechanism of feldspar weathering—I. Experimental studies , 1979 .

[8]  P. Liss,et al.  Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters , 1976 .

[9]  O. Pokrovsky,et al.  Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 °C , 2006 .

[10]  J. Ganor,et al.  The effect of pH and temperature on kaolinite dissolution rate under acidic conditions , 2002 .

[11]  Tsutomu Sato,et al.  Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions , 2005 .

[12]  J. Ganor,et al.  Smectite dissolution kinetics at 80°C and pH 8.8 , 2000 .

[13]  T. Kasama,et al.  Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization , 2003 .

[14]  Werner Stumm,et al.  Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C , 1992 .

[15]  P. Schweda,et al.  Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature , 1996 .

[16]  J. Ganor,et al.  The combined effect of pH and temperature on smectite dissolution rate under acidic conditions , 2005 .

[17]  L. Charlet,et al.  Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations , 2003 .

[18]  L. Charlet,et al.  In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms , 2001 .

[19]  J. Ganor,et al.  Towards the establishment of a reliable proxy for the reactive surface area of smectite , 2005 .

[20]  J. Dandurand,et al.  An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 , 1997 .

[21]  R. Fernández,et al.  Reaction kinetics of FEBEX bentonite in hyperalkaline conditions resembling the cement–bentonite interface , 2006 .

[22]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[23]  E. Caballero,et al.  Kinetics of montmorillonite dissolution in granitic solutions , 2001 .

[24]  P. Vieillard A New Method for the Prediction of Gibbs Free Energies of Formation of Hydrated Clay Minerals Based on the Electronegativity Scale , 2000 .

[25]  S. Brantley,et al.  Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations , 1995 .

[26]  P. Schindler,et al.  The proton promoted dissolution kinetics of K-montmorillonite , 1996 .

[27]  E. Reyes,et al.  Las bentonitas de la serrata de Níjar (Almería): Mineralogía, Geoquímica y Mineralogénesis , 1983 .

[28]  K. Knauss,et al.  Muscovite dissolution kinetics as a function of pH and time at 70°C , 1989 .

[29]  Philippe C. Baveye,et al.  Hysteresis in the Binary Exchange of Cations on 2:1 Clay Minerals: A Critical Review , 1994 .

[30]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[31]  J. Walther,et al.  A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates , 1988 .

[32]  B. Číčel,et al.  Dissolution of Smectites in Hydrochloric Acid: II. Dissolution Rate as a Function of Crystallochemical Composition , 1978 .

[33]  J. Ganor,et al.  The effect of pH on kaolinite dissolution rates and on activation energy , 1995 .

[34]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[35]  J. Ganor,et al.  Stoichiometry of smectite dissolution reaction , 2005 .

[36]  F. Brandt,et al.  Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach , 2003 .

[37]  S. Banwart,et al.  Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry , 1997 .

[38]  Motoharu Kawano,et al.  Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation , 2001 .

[39]  A. Lasaga Chapter 2. FUNDAMENTAL APPROACHES IN DESCRIBING MINERAL DISSOLUTION AND PRECIPITATION RATES , 1995 .

[40]  K. Mueller,et al.  Clay mineral weathering and contaminant dynamics in a caustic aqueous system II. Mineral transformation and microscale partitioning , 2005 .

[41]  Bruno Delvaux,et al.  Halloysite clay minerals – a review , 2005, Clay Minerals.

[42]  J. Chorover,et al.  Clay mineral weathering and contaminant dynamics in a caustic aqueous system: I. Wet chemistry and aging effects , 2005 .

[43]  Y. Kuwahara In-situ AFM study of smectite dissolution under alkaline conditions at room temperature , 2006 .

[44]  M. Comarmond,et al.  The kinetics of the dissolution of chlorite as a function of pH and at 25°C , 2005 .

[45]  T. J. Wolery,et al.  EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3 , 1992 .

[46]  A. Pochini,et al.  Genesis of bentonites from Cabo de Gata, Almeria, Spain: a stable isotope study , 1983, Clay Minerals.

[47]  H. S. Fogler,et al.  Dissolution kinetics: Catalysis by strong acids , 1981 .

[48]  C. Clemency,et al.  The kinetics of dissolution of muscovites at 25°C and 1 atm CO2 partial pressure , 1981 .

[49]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[50]  E. Oelkers,et al.  Do clay mineral dissolution rates reach steady state , 2005 .

[51]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[52]  P. Brady,et al.  Effect of Al and Organic Acids on the Surface Chemistry of Kaolinite , 1998 .

[53]  H. S. Fogler,et al.  Dissolution kinetics: The nature of the particle attack of layered silicates in HF , 1981 .

[54]  E. Caballero,et al.  Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview , 2005, Clay Minerals.

[55]  R. Cygan,et al.  Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: atomic force microscopy evidence for epitaxy and an assessment of reactive surface area , 1999 .

[56]  F. Huertas,et al.  Project FEBEX-Full-scale Engineered Barriers Experiment for a deep geological repository for high-level radioactive waste in crystalline host rock , 2002 .

[57]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure , 1998 .

[58]  L. Charlet,et al.  The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy , 2000 .

[59]  E. Oelkers,et al.  An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C , 2003 .

[60]  S. Nakayama,et al.  Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions , 2004 .

[61]  A. Blum,et al.  Feldspar dissolution kinetics , 1995 .

[62]  A. Lasaga,et al.  Mineralogical approaches to fundamental crystal dissolution kinetics - Dissolution of an A3B structure , 2004 .

[63]  A. Heydemann Über die chemische verwitterung von tonmineralen (experimentelle untersuchungen) , 1966 .

[64]  A. Bauer,et al.  Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C , 1998 .