High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition

We demonstrate high-performance, air-stable, low-temperature processed (≤100 °C) semitransparent (ST) perovskite solar cells (PSCs) by the applications of atomic layer deposition (ALD) technology to deposit ZnO and Al2O3 films as cathode buffer layer (CBL) and encapsulation layer, respectively. The application of ALD ZnO film as CBL in PSCs delivers several remarkable features, including fine-tunability of the work function of the electrode, low deposition temperature (80 °C), high charge selectivity, good electron-transporting ability (filed-effect mobility = 16.1 cm2 V–1 s–1), and excellent film coverage. With these desired interfacial properties, the device with opaque Ag electrode delivers high power conversion efficiency (PCE) up to 16.5%, greatly outperforming the device with state-of-the-art CBL ZnO nanoparticles film (10.8%). For ST PSCs employing Ag nanowires as transparent top electrode, a remarkable PCE of 10.8% with a corresponding average visible transmittance (AVT) of 25.5% is demonstrated, ...

[1]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[2]  A. Jen,et al.  A Versatile Fluoro‐Containing Low‐Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells , 2013 .

[3]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[4]  T. Mikolajick,et al.  Thickness dependent barrier performance of permeation barriers made from atomic layer deposited alumina for organic devices , 2015 .

[5]  Ching-Chiun Wang,et al.  Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition , 2015, Nanotechnology.

[6]  Oleksandr Voznyy,et al.  Perovskite Thin Films via Atomic Layer Deposition , 2015, Advanced materials.

[7]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[8]  Wolfgang Kowalsky,et al.  Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas‐Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics , 2009 .

[9]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[10]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[11]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[12]  Xudong Yang,et al.  Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells , 2015 .

[13]  Bo-Yu Huang,et al.  Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics. , 2012, ACS applied materials & interfaces.

[14]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[15]  Huawei Zhou,et al.  Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells , 2015 .

[16]  Trystan Watson,et al.  Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. , 2015, The journal of physical chemistry letters.

[17]  Arrelaine A. Dameron,et al.  Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition , 2008 .

[18]  K. Choi,et al.  High rate roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films towards gas diffusion barriers on polymers , 2014 .

[19]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[20]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[21]  Zhenan Bao,et al.  Solution-processed, high-performance n-channel organic microwire transistors , 2009, Proceedings of the National Academy of Sciences.

[22]  M. Kempe,et al.  Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. , 2011, Review of Scientific Instruments.

[23]  C. Chang,et al.  Efficient and air-stable plastics-based polymer solar cells enabled by atomic layer deposition , 2011 .

[24]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[25]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[26]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[27]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[28]  M. Yacamán,et al.  Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles , 2005 .

[29]  Y. Park,et al.  Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode , 2014, Scientific Reports.

[30]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[31]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[32]  Furkan H. Isikgor,et al.  Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. , 2015, Nanoscale.

[33]  Karsten Heuser,et al.  Permeation rate measurements by electrical analysis of calcium corrosion , 2003 .

[34]  S. George,et al.  Properties of ZnO / Al2 O 3 Alloy Films Grown Using Atomic Layer Deposition Techniques , 2003 .

[35]  A. Jen,et al.  Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications , 2012 .

[36]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[37]  A. Carlo,et al.  Influence of encapsulation materials on the optical properties and conversion efficiency of heat-sealed flexible polymer solar cells , 2014 .

[38]  W. Barrow,et al.  High rate roll to roll atomic layer deposition, and its application to moisture barriers on polymer films , 2012 .

[39]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[40]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[41]  Jun Ding,et al.  One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[43]  R. Friend,et al.  Enhanced Performance in Fluorene-Free Organometal Halide Perovskite Light-Emitting Diodes using Tunable, Low Electron Affinity Oxide Electron Injectors , 2015, Advanced materials.

[44]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[45]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[46]  B. Wiley,et al.  Solution-processed flexible polymer solar cells with silver nanowire electrodes. , 2011, ACS applied materials & interfaces.

[47]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[48]  K. Choi,et al.  Low-temperature roll-to-roll atmospheric atomic layer deposition of Al₂O₃ thin films. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[49]  Takahiko Miyazaki,et al.  Energy savings of office buildings by the use of semi-transparent solar cells for windows , 2005 .

[50]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[51]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[52]  I. Park,et al.  Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization. , 2014, Small.

[53]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[54]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[55]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[56]  A. Jen,et al.  Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy , 2014 .

[57]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[58]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[59]  Alberto Salleo,et al.  Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid‐State Dye‐Sensitized Solar Cells , 2013 .

[60]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[61]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[62]  Maarit Karppinen,et al.  Atomic layer deposition of ZnO: a review , 2014 .

[63]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[64]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.