On the Complexity of Intersection Non-emptiness for Star-Free Language Classes
暂无分享,去创建一个
Henning Fernau | Markus Holzer | Mateus de Oliveira Oliveira | Petra Wolf | Emmanuel Arrighi | Stefan Hoffmann | Ismael Jecker | H. Fernau | M. Holzer | Petra Wolf | Stefan Hoffmann | Emmanuel Arrighi | Ismaël Jecker
[1] Felix Klein,et al. How Much Lookahead is Needed to Win Infinite Games? , 2014, Log. Methods Comput. Sci..
[2] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[3] Abacaba! – Using a Mathematical Pattern to Connect Art, Music, Poetry and Literature , 2011 .
[4] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[5] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.
[6] Peter Rossmanith,et al. The Emptiness Problem for Intersections of Regular Languages , 1992, MFCS.
[7] Harry B. Hunt,et al. Computational parallels between the regular and context-free languages , 1974, STOC '74.
[8] Marek Chrobak,et al. Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..
[9] I. H. Sudborough. On Tape-Bounded Complexity Classes and Multihead Finite Automata , 1973, J. Comput. Syst. Sci..
[10] Michael Wehar. On the Complexity of Intersection Non-Emptiness Problems , 2017 .
[11] Jorge Almeida,et al. New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy of star-free languages , 2010, Discret. Math. Theor. Comput. Sci..
[12] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[13] Neil Immerman,et al. One-way log-tape reductions , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).
[14] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[15] Christian Glaßer,et al. Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.
[16] Dexter Kozen,et al. Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[17] Christian Glaßer,et al. Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.
[18] Jean-Éric Pin. Bridges for Concatenation Hierarchies , 1998, ICALP.
[19] Anca Muscholl,et al. Permutation rewriting and algorithmic verification , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[20] Jeffrey Shallit,et al. Detecting patterns in finite regular and context-free languages , 2009, Inf. Process. Lett..
[21] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[22] Stefan Hoffmann,et al. Regularity Conditions for Iterated Shuffle on Commutative Regular Languages , 2021, CIAA.
[23] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[24] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[25] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[26] Tomás Masopust,et al. Separability by Piecewise Testable Languages is PTime-Complete , 2017, Theor. Comput. Sci..
[27] Todd Wareham,et al. The Parameterized Complexity of Intersection and Composition Operations on Sets of Finite-State Automata , 2000, CIAA.
[28] Faith Ellen,et al. Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..
[29] Pawel Gawrychowski. Chrobak Normal Form Revisited, with Applications , 2011, CIAA.
[30] Ondrej Klíma,et al. Subhierarchies of the Second Level in the Straubing-THéRien Hierarchy , 2011, Int. J. Algebra Comput..
[31] Shigeki Iwata,et al. Gradually intractable problems and nondeterministic log-space lower bounds , 2005, Mathematical systems theory.
[32] Henning Fernau,et al. Problems on Finite Automata and the Exponential Time Hypothesis , 2016, CIAA.
[33] Richard J. Lipton,et al. On the complexity of intersecting finite state automata and N L versus N P , 2003, Theor. Comput. Sci..
[34] Markus Krötzsch,et al. Partially Ordered Automata and Piecewise Testability , 2019, Log. Methods Comput. Sci..
[35] Michaël Thomazo,et al. On the Complexity of k-Piecewise Testability and the Depth of Automata , 2015, DLT.
[36] Thomas Schwentick,et al. Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.
[37] Michael Wehar,et al. Hardness Results for Intersection Non-Emptiness , 2014, ICALP.
[38] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[39] Thomas Place,et al. Generic Results for Concatenation Hierarchies , 2018, Theory of Computing Systems.
[40] Michaël Thomazo,et al. Complexity of universality and related problems for partially ordered NFAs , 2016, Inf. Comput..
[41] Marcus Nilsson,et al. Regular Model Checking , 2000, CAV.