Aboveground biomass estimation in intervened and non-intervened Nothofagus pumilio forests using remotely sensed data

Forest inventory data can be used along with remotely sensed data to estimate biomass and carbon stocks over large and inaccessible forested areas. In this study, the relationship between satellite-derived multispectral data and forest variables from intervened and non-intervened Nothofagus pumilio forest stands located in the Magellan region of Chile was examined, in order to quantify the over bark volume (OBV) and aboveground tree biomass (AGTB). Four vegetation parameters – the green normalised difference vegetation index (GNDVI), normalised difference vegetation index (NDVI), simple ratio (SR) and vegetation cover fraction (VCF) – were retrieved from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the study area. The results indicate that only the VCF presents significant differences among intervened and non-intervened stands. The best OBV and AGTB models (R2 = 0.58) were found using the SR index and the VCF as predictors. This result could be transferred to estimate biomass and volume in other Nothofagus pumilio forests with similar conditions. Moreover, it can be used to assess temporal carbon changes.

[1]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[2]  Marco A. Peña,et al.  Relationships between forest variables and remote sensing data in a Nothofagus pumilio forest , 2010 .

[3]  S. Syri,et al.  Comparison of uncertainty in different emission trading schemes , 2005 .

[4]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[5]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[6]  María Vanessa Lencinas,et al.  Forty years of silvicultural management in southern Nothofagus pumilio primary forests , 2004 .

[7]  Rodolfo Gajardo La vegetación natural de Chile : clasificación y distribución geográfica , 1994 .

[8]  Carmen Luz de la Maza La Vegetación Natural de Chile , 2010 .

[9]  Daniel G. Cole Remote Sensing for GIS Managers , 2007 .

[10]  Daniel G. Brown A Spectral Unmixing Approach to Leaf Area Index (LAI) Estimation at the Alpine Treeline Ecotone , 2001 .

[11]  Sandra A. Brown Measuring carbon in forests: current status and future challenges. , 2002, Environmental pollution.

[12]  R. Tateishi,et al.  Relationships between percent vegetation cover and vegetation indices , 1998 .

[13]  P. E. Schroeder,et al.  SPATIAL PATTERNS OF ABOVEGROUND PRODUCTION AND MORTALITY OF WOODY BIOMASS FOR EASTERN U.S. FORESTS , 1999 .

[14]  A. Schulte,et al.  Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia , 2009, Annals of Forest Science.

[15]  Curtis E. Woodcock,et al.  Multi-Attribute Vegetation Maps of Forest Service Lands in California Supporting Resource Management Decisions , 2000 .

[16]  J. Caldentey Acumulación de biomasa en rodales naturales de Nothofagus pumilio en Tierra del Fuego, Chile , 1995 .

[17]  P. Mausel,et al.  Application of spectral mixture analysis to Amazonian land-use and land-cover classification , 2004 .

[18]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[19]  Warren B. Cohen,et al.  Carbon Stores, Sinks, and Sources in Forests of Northwestern Russia: Can We Reconcile Forest Inventories with Remote Sensing Results? , 2004 .

[20]  Min Zhao,et al.  Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data , 2005 .

[21]  A. Schulte,et al.  Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia , 2008 .

[22]  Michael A. Wulder,et al.  Estimating Time Since Forest Harvest Using Segmented Landsat ETM+ Imagery , 2004 .

[23]  P. Peri,et al.  Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). , 2000 .

[24]  J. Heiskanen Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data , 2006 .

[25]  C. Humphries The Ecology and Biogeography of Nothofagus forests , 1997, Biodiversity & Conservation.

[26]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[27]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[28]  Min Zhao,et al.  Estimating net primary productivity of Chinese pine forests based on forest inventory data , 2006 .

[29]  H. Mayer,et al.  The effects of a regeneration felling on photosynthetic photon flux density and regeneration growth in a Nothofagus pumilio forest , 2008, European Journal of Forest Research.

[30]  David B. Lobell,et al.  Per-Pixel Analysis of Forest Structure , 2003 .

[31]  R. Allen,et al.  Biomass and macro-nutrients (above- and below-ground) in a New Zealand beech (Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest management , 2003 .

[32]  G. Birth,et al.  Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1 , 1968 .

[33]  J. Heiskanen,et al.  Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .

[34]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[35]  P. Peri,et al.  Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). , 2000 .

[36]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[37]  J. M. Rosenfeld,et al.  Regeneration of Nothofagus pumilio [Poepp. et Endl.] Krasser forests after five years of seed tree cutting. , 2006, Journal of environmental management.

[38]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[39]  Maurizio Mencuccini,et al.  Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. , 2003 .

[40]  R. Allen,et al.  Carbon storage along a stand development sequence in a New Zealand Nothofagus forest , 2003 .

[41]  Daniel N. M. Donoghue,et al.  Remote sensing of upland conifer plantations using Landsat TM data: A case study from Galloway, south-west Scotland , 2000 .

[42]  Philip J. Howarth,et al.  Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems , 1999 .