Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission

We report on a template-stripping method for the direct surface patterning of colloidal quantum-dot thin films to produce highly luminescent structures with feature sizes less than 100 nm. Through the careful design of high quality bull’s-eye gratings we can produce strong directional beaming (10° divergence) with up to 6-fold out-coupling enhancement of spontaneous emission in the surface-normal direction. A transition to narrow single-mode lasing is observed in these same structures at thresholds as low as 120 μJ/cm2. In addition, we demonstrate that these structures can be fabricated on flexible substrates. Finally, making use of the size-tunable character of colloidal quantum dots, we demonstrate spectrally selective out-coupling of light from mixed quantum-dot films. Our results provide a straightforward route toward significantly improved optical properties of colloidal quantum-dot assemblies.

[1]  Lisa V. Poulikakos,et al.  Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge‐Selective Protein Detection , 2015, Advanced materials.

[2]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[3]  Tao Deng,et al.  Soft‐Lithographically Embossed, Multilayered Distributed‐Feedback Nanocrystal Lasers , 2004 .

[4]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[5]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[6]  Taeghwan Hyeon,et al.  Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications , 2016, Advanced materials.

[7]  Christos Argyropoulos,et al.  Ultrafast spontaneous emission source using plasmonic nanoantennas , 2015, Nature Communications.

[8]  M. L. Curri,et al.  Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposites. , 2009, Small.

[9]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[10]  Shanhui Fan,et al.  Extracting Light from Polymer Light‐Emitting Diodes Using Stamped Bragg Gratings , 2004 .

[11]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[12]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[13]  D. Poulikakos,et al.  Near-field light design with colloidal quantum dots for photonics and plasmonics. , 2014, Nano letters.

[14]  K. Bourzac Quantum dots go on display , 2013, Nature.

[15]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[16]  R. Rapaport,et al.  Efficient Collection of Light from Colloidal Quantum Dots with a Hybrid Metal–Dielectric Nanoantenna , 2015 .

[17]  R. Seemann,et al.  Self‐assembled silane monolayers: an efficient step‐by‐step recipe for high‐quality, low energy surfaces , 2015 .

[18]  V. Bulović,et al.  Contact printing of quantum dot light-emitting devices. , 2008, Nano letters.

[19]  Kookheon Char,et al.  Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients , 2008 .

[20]  Ifor D. W. Samuel,et al.  Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode , 2001 .

[21]  M. Kastner,et al.  Nanopatterned electrically conductive films of semiconductor nanocrystals. , 2012, Nano letters.

[22]  O. Voznyy,et al.  25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of Advances , 2013, Advanced materials.

[23]  M. L. Curri,et al.  Nanocrystal-based luminescent composites for nanoimprinting lithography. , 2007, Small.

[24]  V. Menon,et al.  Lasing from InGaP quantum dots in a spin-coated flexible microcavity. , 2008, Optics express.

[25]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[26]  Moungi G Bawendi,et al.  Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. , 2014, Nano letters.

[27]  E. Lifshitz,et al.  Full spectral and angular characterization of highly directional emission from nanocrystal quantum dots positioned on circular plasmonic lenses. , 2014, Nano letters.

[28]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[29]  Ki-Heon Lee,et al.  Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. , 2013, ACS nano.

[30]  Ifor D. W. Samuel,et al.  Bragg scattering from periodically microstructured light emitting diodes , 2000 .

[31]  Gang Chen,et al.  Highly directional emission and photon beaming from nanocrystal quantum dots embedded in metallic nanoslit arrays. , 2011, Nano letters.

[32]  Erdan Gu,et al.  Flexible distributed-feedback colloidal quantum dot laser , 2011 .

[33]  Cherie R. Kagan,et al.  Spectrally-Resolved Dielectric Functions of Solution-Cast Quantum Dot Thin Films , 2015 .

[34]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[35]  Michal Lipson,et al.  Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity , 2003 .

[36]  J. Jasieniak,et al.  Soft‐Lithographed Up‐Converted Distributed Feedback Visible Lasers Based on CdSe–CdZnS–ZnS Quantum Dots , 2012 .

[37]  Rainer F. Mahrt,et al.  Lasing in organic circular grating structures , 2004 .

[38]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[39]  Paul Mulvaney,et al.  Synthesis of Highly Luminescent and Photo-Stable, Graded Shell CdSe/CdxZn1–xS Nanoparticles by In Situ Alloying , 2013 .

[40]  R. Álvarez-Puebla,et al.  Macroscale Plasmonic Substrates for Highly Sensitive Surface-Enhanced Raman Scattering** , 2013, Angewandte Chemie.

[41]  A. Nurmikko What future for quantum dot-based light emitters? , 2015, Nature nanotechnology.

[42]  D. Poulikakos,et al.  Wedge Waveguides and Resonators for Quantum Plasmonics , 2015, Nano letters.

[43]  M. Dawson,et al.  Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass , 2014 .

[44]  Joonhee Lee,et al.  Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. , 2014, Optics express.

[45]  Dennis G. Hall,et al.  Circularly symmetric distributed feedback semiconductor laser : an analysis , 1990 .

[46]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[47]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[48]  V. Bulović,et al.  Inkjet‐Printed Quantum Dot–Polymer Composites for Full‐Color AC‐Driven Displays , 2009 .