Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions.

In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit λj → λ1 of the Lax pair eigenvalues used in the n-fold Darboux transformation that generates the order-n periodic solution from a constant seed solution. Further, this special kind of breather solution of order n can be used to generate the order-n rational solution by taking the limit λ1 → λ0, where λ0 is a special eigenvalue associated with the eigenfunction ϕ of the Lax pair of the mKdV equation. This eigenvalue λ0, for which ϕ(λ0)=0, corresponds to the limit of infinite period of the periodic solution. Our analytical and numerical results show the effective mechanism of generation of higher-order rational solutions of the mKdV equation from the double eigenvalue degeneration process of multi-periodic solutions.

[1]  D. Mihalache,et al.  Few-cycle optical solitons in linearly coupled waveguides , 2016 .

[2]  Adrian Ankiewicz,et al.  Periodic and rational solutions of modified Korteweg-de Vries equation , 2016 .

[3]  J. Rao,et al.  VARIOUS EXACT RATIONAL SOLUTIONS OF THE TWO-DIMENSIONAL MACCARI’S SYSTEM , 2016 .

[4]  A. Fokas,et al.  PARALLEL LINE ROGUE WAVES OF THE THIRD-TYPE DAVEY-STEWARTSON EQUATION , 2016 .

[5]  D. Mihalache,et al.  FAMILIES OF RATIONAL SOLITON SOLUTIONS OF THE KADOMTSEV – PETVIASHVILI I EQUATION , 2016 .

[6]  D. Mihalache,et al.  Few-cycle solitons in supercontinuum generation dynamics , 2016 .

[7]  V. Zakharov,et al.  Superregular breathers in optics and hydrodynamics: Omnipresent modulation instability beyond simple periodicity , 2015 .

[8]  D. Hulubei LOCALIZED STRUCTURES IN NONLINEAR OPTICAL MEDIA : A SELECTION OF RECENT STUDIES , 2015 .

[9]  D. Mihalache,et al.  Models for supercontinuum generation beyond the slowly-varying-envelope approximation , 2014 .

[10]  Jingsong He,et al.  Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Millot,et al.  Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrodinger-equation-solution generator , 2014 .

[12]  D. Mihalache,et al.  Nonlinear optics of intense few-cycle pulses: A overview of recent theoretical and experimental developments , 2014 .

[13]  Hua Wu,et al.  New breather solutions of the model describing few-optical-cycle solitons beyond the slowly varying envelope approximation , 2013 .

[14]  Shihua Chen,et al.  Rogue waves in coupled Hirota systems , 2013 .

[15]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[16]  Li-Chen Zhao,et al.  Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Fokas,et al.  Generating mechanism for higher-order rogue waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Li-Chen Zhao,et al.  Localized nonlinear waves in a two-mode nonlinear fiber , 2012, 1501.05720.

[19]  B. Malomed,et al.  Symmetry breaking in linearly coupled Korteweg-de Vries systems. , 2012, Chaos.

[20]  Fabio Baronio,et al.  Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. , 2012, Physical review letters.

[21]  J. Fatome,et al.  Observation of Kuznetsov-Ma soliton dynamics in optical fibre , 2012, Scientific Reports.

[22]  D. Mihalache,et al.  Derivation of a modified Korteweg–de Vries model for few-optical-cycles soliton propagation from a general Hamiltonian , 2012 .

[23]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  C. Garrett Rogue waves , 2012 .

[25]  B. Guo,et al.  Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations , 2011 .

[26]  C. S. Gardner,et al.  Similarity in the Asymptotic Behavior of Collision-Free Hydromagnetic Waves and Water Waves , 2011 .

[27]  D. Mihalache,et al.  Robust circularly polarized few-optical-cycle solitons in Kerr media , 2011 .

[28]  V. Matveev,et al.  Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation , 2011 .

[29]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[30]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[31]  D. Mihalache,et al.  Few-optical-cycle dissipative solitons , 2010 .

[32]  Pierre Gaillard,et al.  On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation , 2010 .

[33]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Adrian Ankiewicz,et al.  Rogue waves, rational solutions, the patterns of their zeros and integral relations , 2010 .

[35]  Dumitru Mihalache,et al.  Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models , 2009 .

[36]  Sergey V. Sazonov,et al.  Few-cycle nonlinear optics of multicomponent media , 2006 .

[37]  E. F. El-Shamy Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations , 2005 .

[38]  S. Dai,et al.  Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Zhang Hong-qing,et al.  New Soliton-like Solutions to Variable Coefficients MKdV Equation , 2004 .

[40]  C. Qu,et al.  Painlevé property and conservation laws of multi-component mKdV equations , 2004 .

[41]  ZHANGHong-qing,et al.  New Soliton-like Solutions to Variable Coefficients MKdV Equation , 2004 .

[42]  François Sanchez,et al.  Models for optical solitons in the two-cycle regime , 2004, nlin/0411010.

[43]  M. A. Helal,et al.  Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics , 2002 .

[44]  V. Matveev Positons: Slowly Decreasing Analogues of Solitons , 2002 .

[45]  K. Lonngren,et al.  On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line , 2001 .

[46]  A. H. Khater,et al.  Bäcklund Transformations and Exact Solutions for Alfvén Solitons in a Relativistic Electron–Positron Plasma , 1998 .

[47]  Kwok Wing Chow,et al.  Positon-like Solutions of Nonlinear Evolution Equations in (2+1) Dimensions , 1998 .

[48]  K. Lonngren Ion acoustic soliton experiments in a plasma , 1998 .

[49]  Dmitry E. Pelinovsky,et al.  Rational solutions of the KP hierarchy and the dynamics of their poles. II. Construction of the degenerate polynomial solutions , 1998 .

[50]  Boris A. Malomed,et al.  Parametric envelope solitons in coupled Korteweg-de Vries equations , 1997 .

[51]  A. Stahlhofen,et al.  DYNAMIC PROPERTIES OF POSITONS , 1995 .

[52]  S. Sasa,et al.  Kink soliton characterizing traffic congestion. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  B. Malomed,et al.  Gap-soliton hunt in a coupled Korteweg-de Vries system , 1995 .

[54]  V. Matveev,et al.  Positons for the Toda lattice and related spectral problems , 1995 .

[55]  L. Pratt,et al.  Predicting eddy detachment for an equivalent barotropic thin jet , 1994 .

[56]  Grimshaw,et al.  New type of gap soliton in a coupled Korteweg-de Vries wave system. , 1994, Physical review letters.

[57]  R. Beutler,et al.  Positon solutions of the sine‐Gordon equation , 1993 .

[58]  Hiroaki Ono,et al.  Soliton Fission in Anharmonic Lattices with Reflectionless Inhomogeneity , 1992 .

[59]  V. Matveev,et al.  Positon-positon and soliton-positon collisions: KdV case , 1992 .

[60]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[61]  A. Stahlhofen Positons of the modified Korteweg de Vries equation , 1992 .

[62]  Yuri S. Kivshar,et al.  Solitons in a system of coupled Korteweg-de Vries equations , 1989 .

[63]  P. Fung,et al.  Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition u(x, t) to b as x to +or- infinity , 1988 .

[64]  Shinsuke Watanabe Ion Acoustic Soliton in Plasma with Negative Ion , 1984 .

[65]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[66]  J. Satsuma Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .

[67]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[68]  A. Sjöberg On the Korteweg-de Vries equation: Existence and uniqueness , 1970 .

[69]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[70]  N. Zabusky A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction , 1967 .

[71]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .

[72]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .