Preferential location of lidocaine and etidocaine in lecithin bilayers as determined by EPR, fluorescence and 2H NMR.

[1]  G. Strichartz,et al.  Tetracaine-membrane interactions: effects of lipid composition and phase on drug partitioning, location, and ionization. , 2007, Biophysical journal.

[2]  M. Skaf,et al.  Interactions of chlorpromazine with phospholipid monolayers: effects of the ionization state of the drug. , 2007, Biophysical chemistry.

[3]  A. Lyubartsev,et al.  Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. , 2007, Biophysical chemistry.

[4]  P. Pascutti,et al.  Water solvent and local anesthetics: a computational study , 2007 .

[5]  S. Oyama,et al.  Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel. , 2006, Biophysical chemistry.

[6]  M. Skaf,et al.  Molecular dynamics simulations of neutral chlorpromazine in zwitterionic phospholipid monolayers. , 2006, The journal of physical chemistry. B.

[7]  Leonardo Fernandes Fraceto,et al.  Interacao de anestesicos locais com lipossomos determinada por espectroscopia de infravermelho , 2006 .

[8]  A. Spisni,et al.  Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements. , 2005, Biophysical chemistry.

[9]  L. Franzoni,et al.  Spectroscopic evidence for a preferential location of lidocaine inside phospholipid bilayers. , 2002, Biophysical chemistry.

[10]  W. G. Wood,et al.  Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. , 2002, Biochimica et biophysica acta.

[11]  D. Yokaichiya,et al.  Interaction of benzocaine with model membranes. , 2000, Biophysical chemistry.

[12]  W. Catterall,et al.  Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Schreier,et al.  Molecular and physicochemical aspects of local anesthetic-membrane interaction. , 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[14]  S. Schreier,et al.  Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure. , 1995, Biochimica et biophysica acta.

[15]  J. Baber,et al.  Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy. , 1995, Biochemistry.

[16]  W. Catterall,et al.  Molecular determinants of state-dependent block of Na+ channels by local anesthetics. , 1994, Science.

[17]  H. Kamaya,et al.  Local anesthetics destabilize lipid membranes by breaking hydration shell: infrared and calorimetry studies. , 1994, Biochimica et biophysica acta.

[18]  S. P. Gupta,et al.  QSAR (quantitative structure-activity relationship) studies on local anesthetics , 1991 .

[19]  A. Jonas,et al.  Pressure effects on dipalmitoylphosphatidylcholine bilayers measured by deuterium nuclear magnetic resonance , 1991 .

[20]  S. Schreier,et al.  Methods for the determination of partition coefficients based on the effect of solutes upon membrane structure , 1990 .

[21]  D. Cafiso,et al.  Localizing the nitroxide group of fatty acid and voltage-sensitive spin-labels in phospholipid bilayers. , 1988, Biochimica et biophysica acta.

[22]  S. Schreier,et al.  Spin label study of local anesthetic-lipid membrane interactions. Phase separation of the uncharged form and bilayer micellization by the charged form of tetracaine. , 1986, Biochimica et biophysica acta.

[23]  R. Chatelier,et al.  Effects of quenching mechanism and type of quencher association on stern-volmer plots in compartmentalized systems. , 1986, Biophysical journal.

[24]  H. Jarrell,et al.  Interaction of amphotericin B with membrane lipids as viewed by 2H-NMR. , 1984, Biochimica et biophysica acta.

[25]  K. Kitamura,et al.  Intra- and intermolecular proton-proton nuclear Overhauser effect studies on the interactions of chlorpromazine with lecithin vesicles , 1984 .

[26]  I. Smith,et al.  Anesthetic-membrane interaction: a 2H nuclear magnetic resonance study of the binding of specifically deuterated tetracaine and procaine to phosphatidylcholine. , 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[27]  S. Schreier,et al.  Effect of lipid membranes on the apparent pK of the local anesthetic tetracaine. Spin label and titration studies. , 1984, Biochimica et biophysica acta.

[28]  K. Sikaris,et al.  The interaction of local anaesthetics with synthetic phospholipid bilayers. , 1982, Biochemical pharmacology.

[29]  J. Westman,et al.  Charge and pH dependent drug binding to model membranes. A 2H-NMR and light absorption study. , 1982, Biochimica et biophysica acta.

[30]  M. Iwaki,et al.  Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane. , 1981, Biochimica et biophysica acta.

[31]  S. Schreier,et al.  Molecular details of anesthetic--lipid interaction as seen by deuterium and phosphorus-31 nuclear magnetic resonance. , 1981, Biochemistry.

[32]  M. Bloom,et al.  Direct determination of the oriented sample nmr spectrum from the powder spectrum for systems with local axial symmetry , 1981 .

[33]  S. Schreier,et al.  Multiple binding sites for local anesthetics in membranes: characterization of the sites and their equilibria by deuterium NMR of specifically deuterated procaine and tetracaine. , 1980, Canadian journal of biochemistry.

[34]  M. Rance,et al.  Orientational order of unsaturated lipids in the membranes of Acholeplasma laidlawii as observed by 2H-NMR. , 1980, Biochimica et biophysica acta.

[35]  H. Möhwald,et al.  Monitoring the location profile of fluorophores in phosphatidylcholine bilayers by the use or paramagnetic quenching. , 1979, Biochimica et biophysica acta.

[36]  J. Seelig Deuterium magnetic resonance: theory and application to lipid membranes , 1977, Quarterly Reviews of Biophysics.

[37]  B. Hille,et al.  Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction , 1977, The Journal of general physiology.

[38]  M. Bloom,et al.  Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains , 1976 .

[39]  B. Covino,et al.  Local anesthetics : mechanisms of action and clinical use , 1976 .

[40]  J. Seelig,et al.  Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. , 1975, Biochimica et biophysica acta.

[41]  G. Giotta,et al.  Binding of spin-labeled local anesthetics to phosphatidylcholine and phosphatidylserine liposomes. , 1974, Archives of biochemistry and biophysics.

[42]  P. E. Godici,et al.  The dynamic structure of lipid membranes. A 13C nuclear magnetic resonance study using spin labels. , 1974, Biochemistry.

[43]  G. Strichartz,et al.  The Inhibition of Sodium Currents in Myelinated Nerve by Quaternary Derivatives of Lidocaine , 1973, The Journal of general physiology.

[44]  G. Giotta,et al.  Spin-labeled analogs of local anesthetics. , 1973, Journal of medicinal chemistry.

[45]  L. Burnett,et al.  Deuteron Quadrupole Coupling Constants in Three Solid Deuterated Paraffin Hydrocarbons: C2D6, C4D10, C6D14 , 1971 .