A New Design of a Submicropositioner Utilizing Electromagnetic Actuators and Flexure Mechanism

In this paper, a novel XY-dimensional submicropositioner, including mechanism, control, and analysis, is successfully presented. The design of the submicropositioner utilizes a monolithic parallel flexure mechanism with built-in electromagnetic actuators and optical sensors to achieve the object of 3-DOF precise motion. From the provided experimental results, there are several main goals that have been achieved in this paper: (1) to integrate the electromagnetic actuator and the parallel flexure mechanism for planar positioning system; (2) to establish the mathematical modeling; (3) to develop an advanced adaptive sliding-mode controller; and (4) to perform extensive experiments to test the realistic performance.

[1]  Takashi Yumura,et al.  Electromagnetic Actuator Control: A Linear Parameter-Varying (LPV) Approach , 2007, IEEE Transactions on Industrial Electronics.

[2]  Béla Lantos,et al.  Modeling, Identification, and Compensation of Stick-Slip Friction , 2007, IEEE Transactions on Industrial Electronics.

[3]  Bijan Shirinzadeh,et al.  Certified workspace analysis of 3RRR planar parallel flexure mechanism , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  Li-Chen Fu,et al.  Dual-Stage Piezoelectric Nano-Positioner Utilizing a Range-Extended Optical Fiber Fabry–Perot Interferometer , 2007, IEEE/ASME Transactions on Mechatronics.

[5]  Min-Fu Hsieh,et al.  Servo design of a vertical axis drive using dual linear motors for high speed electric discharge machining , 2007 .

[6]  Faa-Jeng Lin,et al.  Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network , 2009, IEEE Transactions on Industrial Electronics.

[7]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[8]  S. Drakunov,et al.  Attitude stabilization of small satellites using only magnetic actuation , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[9]  F. Messine,et al.  The electromagnetic actuator design problem: a general and rational approach , 2004, IEEE Transactions on Magnetics.

[10]  Kouhei Ohnishi,et al.  Sliding Modes in Constrained Systems Control , 2008, IEEE Transactions on Industrial Electronics.

[11]  Yanling Tian,et al.  A flexure-based mechanism and control methodology for ultra-precision turning operation , 2009 .

[12]  R. Oboe,et al.  Hard disk drive with voltage driven voice coil motor and model-based control , 2004, APMRC 2004 Asia-Pacific Magnetic Recording Conference, 2004..

[13]  R.B. Mrad,et al.  A systematic procedure for the design of piezoelectric inchworm precision positioners , 2004, IEEE/ASME Transactions on Mechatronics.

[14]  Gary H. Koopmann,et al.  Design, modeling, and performance of a high-force piezoelectric inchworm motor , 1998, Smart Structures.

[15]  Huan-Wen Tzeng,et al.  A new mechanism design of electro-magnetic actuator for a micro-positioner. , 2007, ISA transactions.

[16]  H. Hirani,et al.  Magnetic Bearing Configurations: Theoretical and Experimental Studies , 2008, IEEE Transactions on Magnetics.

[17]  L. Encica,et al.  Space Mapping Optimization of a Cylindrical Voice Coil Actuator , 2005, IEEE International Conference on Electric Machines and Drives, 2005..

[18]  Yuri Orlov,et al.  Hybrid Sliding-Mode-Based Control of Underactuated Systems With Dry Friction , 2008, IEEE Transactions on Industrial Electronics.

[19]  Youyi Wang,et al.  Nonlinear Tracking Control for a Hard Disk Drive Dual-Stage Actuator System , 2008, IEEE/ASME Transactions on Mechatronics.

[20]  Ping Fang,et al.  High-Response Electromagnetic Actuator With Twisting Axis for Gravure Systems , 2009, IEEE Transactions on Magnetics.

[21]  S. Bashash,et al.  Robust Adaptive Control of Coupled Parallel Piezo-Flexural Nanopositioning Stages , 2009, IEEE/ASME Transactions on Mechatronics.

[22]  I-Ming Chen,et al.  Micro-motion selective-actuation X Y Z flexure parallel mechanism: design and modeling , 2005 .

[23]  Asif Sabanoviç,et al.  Sliding-Mode Control for High-Precision Motion of a Piezostage , 2007, IEEE Transactions on Industrial Electronics.

[24]  Maxence Bigerelle,et al.  Optimized design of a four discrete positions electromagnetic actuator , 2009, 2009 IEEE International Conference on Mechatronics.

[25]  A. Yalçinkaya,et al.  Two-axis electromagnetic microscanner for high resolution displays , 2006, Journal of Microelectromechanical Systems.

[26]  S. Verma,et al.  Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications , 2005, IEEE Transactions on Industry Applications.

[27]  K. Pister,et al.  A planar air levitated electrostatic actuator system , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[28]  Hsin-Jang Shieh,et al.  An Adaptive Approximator-Based Backstepping Control Approach for Piezoactuator-Driven Stages , 2008, IEEE Transactions on Industrial Electronics.

[29]  Maria Letizia Corradini,et al.  Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator , 2002, IEEE Trans. Control. Syst. Technol..

[30]  Chang-Hyeon Ji,et al.  Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field , 2007, Journal of Microelectromechanical Systems.

[31]  Yasutaka Fujimoto,et al.  Development and Analysis of a High Thrust Force Direct-Drive Linear Actuator , 2009, IEEE Transactions on Industrial Electronics.

[32]  Chia-Hsiang Menq,et al.  Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage , 2002 .

[33]  Xinkai Chen,et al.  Erratum to "Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage" , 2009, IEEE Trans. Ind. Electron..

[34]  Youguang Guo,et al.  Development of electromagnetic linear actuators for micro robots , 2008, 2008 International Conference on Electrical Machines and Systems.

[35]  A. Safari,et al.  Piezoelectric composites for sensor and actuator applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Xinkai Chen,et al.  Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage , 2008, IEEE Transactions on Industrial Electronics.

[37]  Srinivasa M. Salapaka,et al.  Control of the nanopositioning devices , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[38]  Sang-Ho Lee,et al.  Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing , 2003, IEEE Trans. Ind. Electron..

[39]  David L. Trumper,et al.  Modeling and vector control of a planar magnetic levitator , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[40]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Youyi Wang,et al.  Discrete-Time Sliding Mode Control With Time-Varying Surface for Hard Disk Drives , 2009, IEEE Transactions on Control Systems Technology.

[42]  Dae-Gab Gweon,et al.  Piezo-driven metrological multiaxis nanopositioner , 2001 .