An Optimal Embedding of Cycles into Incomplete Hypercubes

In order to use existing algorithms for rings and linear arrays on other architectures, the embedding of cycles has been an important issue. In this paper, we propose an optimal algorithm to embed cycles of arbitrary length into incomplete hypercubes.

[1]  Ten-Hwang Lai,et al.  The Complexity of Congestion-1 Embedding in a Hypercube , 1991, J. Algorithms.

[2]  Chuan Yi Tang,et al.  Embedding cycles and meshes onto incomplete hypercubes , 2000, Int. J. Comput. Math..

[3]  Jaroslav Opatrny,et al.  Embeddings of Complete Binary Trees into Extended Grids with Edge-congestion 1* , 1996, Parallel Algorithms Appl..

[4]  Hung-Yi Chang,et al.  Embedding Cycles in IEH Graphs , 1997, Inf. Process. Lett..

[5]  S. Lakshmivarahan,et al.  Embedding of cycles and Grids in Star Graphs , 1991, J. Circuits Syst. Comput..

[6]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[7]  Howard P. Katseff,et al.  Incomplete Hypercubes , 1988, IEEE Trans. Computers.

[8]  Arkady Kanevsky,et al.  On the Embedding of Cycles in Pancake Graphs , 1995, Parallel Comput..

[9]  Matthias F. Stallmann,et al.  On Embedding Binary Trees into Hypercubes , 1995, J. Parallel Distributed Comput..

[10]  Khaled Day,et al.  Embedding of Cycles in Arrangement Graphs , 1993, IEEE Trans. Computers.

[11]  Magdy A. Bayoumi,et al.  The Hierarchical Hypercube: A New Interconnection Topology for Massively Parallel Systems , 1994, IEEE Trans. Parallel Distributed Syst..

[12]  Vittorio Scarano,et al.  Embedding Graphs onto the Supercube , 1995, IEEE Trans. Computers.