Role of influenza A virus NP acetylation on viral growth and replication

[1]  M. Lai,et al.  CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication , 2017, mBio.

[2]  M. Dorf,et al.  Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction , 2017, Nature Communications.

[3]  A. García-Sastre,et al.  Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism , 2016, Proceedings of the National Academy of Sciences.

[4]  T. Arnesen,et al.  The world of protein acetylation. , 2016, Biochimica et biophysica acta.

[5]  M. Beer,et al.  A conserved influenza A virus nucleoprotein code controls specific viral genome packaging , 2016, Nature Communications.

[6]  J. Hsu,et al.  Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development , 2016, Scientific Reports.

[7]  J. Coon,et al.  Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery , 2015, PLoS pathogens.

[8]  Tiago J. S. Lopes,et al.  Influenza virus-host interactome screen as a platform for antiviral drug development. , 2014, Cell host & microbe.

[9]  G. Neumann,et al.  At the centre: influenza A virus ribonucleoproteins , 2014, Nature Reviews Microbiology.

[10]  Y. Shu,et al.  Sumoylation of Influenza A Virus Nucleoprotein Is Essential for Intracellular Trafficking and Virus Growth , 2014, Journal of Virology.

[11]  Manuel Rosa-Calatrava,et al.  Influenza Viruses and mRNA Splicing: Doing More with Less , 2014, mBio.

[12]  Hari Shroff,et al.  Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm , 2014, PLoS pathogens.

[13]  E. Fodor,et al.  Regulation of Influenza A Virus Nucleoprotein Oligomerization by Phosphorylation , 2014, Journal of Virology.

[14]  Kendra A Bussey,et al.  Specific Nucleoprotein Residues Affect Influenza Virus Morphology , 2013, Journal of Virology.

[15]  L. Brunotte,et al.  Adaptive Mutations in the Nuclear Export Protein of Human-Derived H5N1 Strains Facilitate a Polymerase Activity-Enhancing Conformation , 2013, Journal of Virology.

[16]  M. Boerries,et al.  Consistency of the Proteome in Primary Human Keratinocytes With Respect to Gender, Age, and Skin Localization* , 2013, Molecular & Cellular Proteomics.

[17]  N. Heaton,et al.  Colocalization of Different Influenza Viral RNA Segments in the Cytoplasm before Viral Budding as Shown by Single-molecule Sensitivity FISH Analysis , 2013, PLoS pathogens.

[18]  G. Kochs,et al.  Pandemic Influenza A Viruses Escape from Restriction by Human MxA through Adaptive Mutations in the Nucleoprotein , 2013, PLoS pathogens.

[19]  J. J. Conesa,et al.  The Structure of Native Influenza Virion Ribonucleoproteins , 2012, Science.

[20]  A. Tarakhovsky,et al.  Suppression of the antiviral response by an influenza histone mimic , 2012, Nature.

[21]  L. Brunotte,et al.  Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells , 2012, Nature Communications.

[22]  P. Shaw,et al.  Stabilization of Influenza Virus Replication Intermediates Is Dependent on the RNA-Binding but Not the Homo-Oligomerization Activity of the Viral Nucleoprotein , 2011, Journal of Virology.

[23]  Aurelija Zvirbliene,et al.  Influenza Virus Ribonucleoprotein Complexes Gain Preferential Access to Cellular Export Machinery through Chromatin Targeting , 2011, PLoS pathogens.

[24]  Chung-Yi Wu,et al.  Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication , 2010, The EMBO journal.

[25]  S. Zhuang,et al.  Acetylation modulates prolactin receptor dimerization , 2010, Proceedings of the National Academy of Sciences.

[26]  Xianghong Jing,et al.  Influenza Virus M2 Protein Mediates ESCRT-Independent Membrane Scission , 2010, Cell.

[27]  L. Mahadevan,et al.  Stability of histone modifications across mammalian genomes: Implications for ‘epigenetic’ marking , 2009, Journal of cellular biochemistry.

[28]  A. Johnsson,et al.  HAT–HDAC interplay modulates global histone H3K14 acetylation in gene‐coding regions during stress , 2009, EMBO reports.

[29]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[30]  J. Carrascosa,et al.  The Structure of a Biologically Active Influenza Virus Ribonucleoprotein Complex , 2009, PLoS pathogens.

[31]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[32]  R. Krug,et al.  The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA , 2006, Nature.

[33]  A. Fukamizu,et al.  Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Victor G Corces,et al.  Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. , 2004, Trends in genetics : TIG.

[35]  C. Müller,et al.  Crystal structure of the M1 protein‐binding domain of the influenza A virus nuclear export protein (NEP/NS2) , 2003, The EMBO journal.

[36]  Muyang Li,et al.  Acetylation of p53 Inhibits Its Ubiquitination by Mdm2* , 2002, The Journal of Biological Chemistry.

[37]  R. Kornberg,et al.  Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome , 1999, Cell.

[38]  G. Almouzni,et al.  Global Transcription Regulators of Eukaryotes , 1999, Cell.

[39]  B. Turner,et al.  Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase , 1998, The EMBO journal.

[40]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[41]  M. Grunstein,et al.  Histone H3 N‐terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. , 1992, The EMBO journal.

[42]  K. Martin,et al.  Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import , 1991, Cell.

[43]  P. Palese,et al.  The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins , 1998, The EMBO journal.