Engineering superconducting properties of multiferroic copper oxide heterostructures

,

[1]  M. Scuderi,et al.  A Two-Dimensional Superconducting Electron Gas in Freestanding LaAlO3/SrTiO3 Micromembranes. , 2022, Nano letters.

[2]  H. Eisaki,et al.  On the electron pairing mechanism of copper-oxide high temperature superconductivity , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Weber Unifying guiding principles for designing optimized superconductors , 2021, Proceedings of the National Academy of Sciences.

[4]  C. Pickard,et al.  From Slater to Mott physics: epitaxial engineering of electronic correlations in oxide interfaces , 2021, 2104.13723.

[5]  D. Sénéchal,et al.  Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity , 2021, Proceedings of the National Academy of Sciences.

[6]  Jae Hyuck Jang,et al.  In Situ Observation of Two-Dimensional Electron Gas Creation at the Interface of an Atomic Layer-Deposited Al2O3/TiO2 Thin-Film Heterostructure , 2020 .

[7]  Alex Taekyung Lee,et al.  Magnetism of (LaCoO_{3})_{n}+(LaTiO_{3})_{n} superlattices (n=1,2) , 2020 .

[8]  S. Ismail-Beigi,et al.  Strong Orbital Polarization in a Cobaltate-Titanate Oxide Heterostructure. , 2019, Physical review letters.

[9]  Adam J. Jackson,et al.  sumo: Command-line tools for plotting and analysis of periodic *ab initio* calculations , 2018, J. Open Source Softw..

[10]  V. Gopalan,et al.  Artificial two-dimensional polar metal at room temperature , 2018, Nature Communications.

[11]  H. Fjellvåg,et al.  Phase Control in Thin Films of Layered Cuprates , 2018 .

[12]  Dimitar Pashov,et al.  Metal-insulator transition in copper oxides induced by apex displacements , 2017, 1711.06651.

[13]  C. Weber What controls the critical temperature of high temperature copper oxide superconductors: insights from scanneling tunnelling microscopy. , 2017, Science bulletin.

[14]  W. Ruan,et al.  Relationship between the parent charge transfer gap and maximum transition temperature in cuprates , 2016, 1701.04190.

[15]  Yan Chen,et al.  Improvements of dielectric properties of Cu doped LaTiO3+δ , 2016 .

[16]  G. Guo,et al.  Two-dimensional superconductivity at (110) LaAlO3/SrTiO3 interfaces , 2014, 1409.5855.

[17]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[18]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[19]  G. Kotliar,et al.  Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy , 2011, 1108.3028.

[20]  A. Tremblay Two-Particle-Self-Consistent Approach for the Hubbard Model , 2011, 1107.1534.

[21]  R. Takahashi,et al.  Transport properties of LaTiO3/SrTiO3 heterostructures , 2010 .

[22]  N. Ong,et al.  Diamagnetism and Cooper pairing above T c in cuprates , 2009, 0906.1823.

[23]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[24]  F. Martínez,et al.  Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3 perovskite catalyst , 2004 .

[25]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  Anil Khurana,et al.  Even Lanthanum Copper Oxide is Superconducting , 1987 .