The Geometry of Walker Manifolds
暂无分享,去创建一个
Peter Gilkey | Ramón Vázquez-Lorenzo | Stana Nikcevic | Eduardo García-Río | Miguel Brozos-Vázquez | E. García‐Río | P. Gilkey | M. Brozos-Vázquez | S. Nikcevic | R. Vázquez-Lorenzo
[1] Henrik Pedersen,et al. The Ledger curvature conditions and D'Atri geometry , 1999 .
[2] Oldřich Kowalski,et al. Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point , 2006 .
[3] Peter B. Gilkey,et al. The Jordan normal form of Osserman algebraic curvature tensors , 2001 .
[4] M Brozos-V. Pseudo-riemannian Manifolds with Commuting Jacobi Operators , .
[5] M Brozos-V. Manifolds with Commuting Jacobi Operators , .
[6] Lieven Vanhecke,et al. Riemannian Manifolds of Conullity Two , 1996 .
[7] Oldřich Kowalski,et al. A Classification of Locally Homogeneous Affine Connections with Skew-Symmetric Ricci Tensor on 2-Dimensional Manifolds , 2000 .
[8] Yung-Chow Wong. Two dimensional linear connexions with zero torsion and recurrent curvature , 1964 .
[9] Franki Dillen,et al. A Ricci-semi-symmetric hypersurface of Euclidean space which is not semi-symmetric , 2001 .
[10] Yasuo Matsushita. Walker 4-manifolds with proper almost complex structures , 2005 .
[11] C. W. Mitchell. Ads Pp-waves , 2005 .
[12] 小平 邦彦,et al. Global analysis : papers in honor of K. Kodaira , 2015 .
[13] Peter B. Gilkey,et al. Riemannian manifolds whose skewd-symmetric curvature operator has constant eigenvalues , 1999 .
[14] Ramón Vázquez-Lorenzo,et al. Almost Kähler Walker 4-manifolds , 2007 .
[15] Giovanni Calvaruso. Addendum to “Homogeneous structures on three-dimensional Lorentzian manifolds” [J. Geom. Phys. 57 (2007) 1279–1291] , 2008 .
[16] E. García‐Río,et al. Conformally Osserman four-dimensional manifolds whose conformal Jacobi operators have complex eigenvalues , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[17] H. Wu,et al. On the de Rham decomposition theorem , 1964 .
[18] Andrzej Derdzinski,et al. Curvature-homogeneous indefinite Einstein metrics in dimension four: the diagonalizable case , 2002, math/0211248.
[19] Hirosi Ooguri,et al. Geometry of N=2 strings , 1991 .
[20] Luis Hernández-lamoneda,et al. Curvature vs. Almost Hermitian Structures , 2000 .
[21] Stefan Ivanov,et al. Riemannian Manifolds in Which Certain Curvature Operator Has Constant Eigenvalues along Each Circle , 1997 .
[22] Yasuo Matsushita,et al. Hitchin–Thorpe-Type Inequalities for Pseudo-Riemannian 4-Manifolds of Metric Signature (++−−) , 2001 .
[23] P. Gilkey,et al. GEOMETRIC REALIZATIONS OF CURVATURE MODELS BY MANIFOLDS WITH CONSTANT SCALAR CURVATURE , 2008, 0811.1651.
[24] J. Shah,et al. VECTOR FIELDS ON SPHERES , 2007 .
[25] Charles P. Boyer,et al. A note on hyperhermitian four-manifolds , 1988 .
[26] Neda Bokan,et al. A Note on Osserman Lorentzian Manifolds , 1997 .
[27] Kazumi Tsukada,et al. Three-dimensional conformally flat homogeneous Lorentzian manifolds , 2007 .
[28] I. Holopainen. Riemannian Geometry , 1927, Nature.
[29] Quo-Shin Chi. Curvature characterization and classification of rank-one symmetric spaces. , 1991 .
[30] Giovanni Calvaruso,et al. Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues , 2008 .
[31] Eduardo García-Río,et al. Four-dimensional indefinite Kähler Osserman manifolds , 2005 .
[32] Ramón Vázquez-Lorenzo,et al. Osserman Manifolds in Semi-Riemannian Geometry , 2002 .
[33] John Armstrong,et al. An ansatz for almost-Kähler, Einstein 4-manifolds , 2002 .
[34] Hitoshi Takagi,et al. On conformally flat spaces satisfying a certain condition on the Ricci tensor , 1971 .
[35] T. Y. Thomas. The decomposition of Riemann spaces in the large , 1939 .
[36] Z. Szabó,et al. A short topological proof for the symmetry of 2 point homogeneous spaces , 1991 .
[37] P. Gilkey,et al. Geometric realizations of Hermitian curvature models , 2008, 0812.2743.
[38] Bernd Fiedler. Determination of the structure of algebraic curvature tensors by means of Young symmetrizers , 2002, ArXiv.
[39] Lieven Vanhecke,et al. Curvature homogeneity for four-dimensional manifolds , 1995 .
[40] P. Gilkey,et al. The classification of simple Jacobi--Ricci commuting algebraic curvature tensors , 2007 .
[41] J. Milnor. Curvatures of left invariant metrics on lie groups , 1976 .
[42] Peter B. Gilkey,et al. The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds , 2007 .
[43] Ramón Vázquez-Lorenzo,et al. New examples of Osserman metrics with nondiagonalizable Jacobi operators , 2006 .
[44] Boris Khesin,et al. Symplectic and Contact Topology: Interactions and Perspectives , 2003 .
[45] Corey Dunn,et al. Curvature Homogeneous Pseudo-Riemannian Manifolds which are not Locally Homogeneous , 2005 .
[46] Jimmy Petean. Indefinite Kähler-Einstein Metrics on Compact Complex Surfaces , 1997 .
[47] Giovanni Calvaruso,et al. Homogeneous structures on three-dimensional Lorentzian manifolds , 2007 .
[48] Eduardo García-Río,et al. Four-dimensional manifolds with degenerate self-dual Weyl curvature operator , 2008 .
[49] Jurgen Berndt. Three-dimensional Einstein-like manifolds , 1992 .
[50] Mohammad Reza Chaichi,et al. Three-dimensional Lorentz manifolds admitting a parallel null vector field , 2005 .
[51] Stefan Ivanov,et al. ParaHermitian and paraquaternionic manifolds , 2005 .
[52] Adam Chudecki,et al. From hyperheavenly spaces to Walker and Osserman spaces: I , 2008 .
[53] Stana Nikcevic,et al. Generalized plane wave manifolds , 2005 .
[54] Alfred Gray,et al. Einstein-like manifolds which are not Einstein , 1978 .
[55] Ramón Vázquez-Lorenzo,et al. Affine Osserman connections and their Riemann extensions , 1999 .
[56] Jacques Lafontaine. Conformal Geometry from the Riemannian Viewpoint , 1988 .
[57] A. G. Walker. CONNEXIONS FOR PARALLEL DISTRIBUTIONS IN THE LARGE , 1955 .
[58] Quo-Shin Chi,et al. A curvature characterization of certain locally rank-one symmetric spaces , 1988 .
[59] Ramón Vázquez-Lorenzo,et al. Lorentzian three-manifolds with special curvature operators , 2008 .
[60] S. Rahmani,et al. Métriques de lorentz sur les groupes de lie unimodulaires, de dimension trois , 1992 .
[61] P. Gilkey,et al. Geometric realizations of generalized algebraic curvature operators , 2008, 0811.3180.
[62] M. Gromov,et al. Partial Differential Relations , 1986 .
[63] Xinkai Wu,et al. Dynamics of antimembranes in the maximally supersymmetric eleven-dimensional pp wave , 2006 .
[64] Louis Nirenberg,et al. Complex Analytic Coordinates in Almost Complex Manifolds , 1957 .
[65] Grozio Stanilov. Higher order Skew-symmetric and symmetric curvature operators , 2004 .
[66] H. K. Nickerson. On conformally symmetric spaces , 1985 .
[67] Guosong Zhao,et al. Global Affine Differential Geometry of Hypersurfaces , 1993 .
[68] Peter B. Gilkey,et al. Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor , 2001 .
[69] Neil Marcus. The N=2 open string , 1992 .
[70] Graham Hall,et al. Affine collineations in space‐time , 1988 .
[71] L.Bérard Bergery,et al. Sur l'holonomie des variétés pseudo-riemanniennes de signature (n, n) , 1997 .
[72] Charles P. Boyer. A note on hyper-Hermitian four-manifolds , 1988 .
[73] Adil Belhaj,et al. Superstring theory on pp waves with ADE geometries , 2005 .
[74] Giovanni Calvaruso,et al. Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds , 2007 .
[75] Maciej Dunajski. Anti-self-dual four–manifolds with a parallel real spinor , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[76] Eduardo García-Río,et al. On a problem of Osserman in Lorentzian geometry , 1997 .
[77] D. Alekseevsky,et al. Cones over pseudo-Riemannian manifolds and their holonomy , 2007, 0707.3063.
[78] Ramón Vázquez-Lorenzo,et al. OSSERMAN METRICS ON WALKER 4-MANIFOLDS EQUIPPED WITH A PARA-HERMITIAN STRUCTURE , 2007 .
[79] Oldřich Kowalski,et al. Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds , 2008 .
[80] Maciej Dunajski,et al. Anti-Self-Dual Conformal Structures in Neutral Signature , 2006, math/0610280.
[81] Ramón Vázquez-Lorenzo,et al. Four-Dimensional Osserman Symmetric Spaces , 2001 .
[82] Yu. G. Nikonorov,et al. On δ-homogeneous Riemannian manifolds , 2007, Springer Monographs in Mathematics.
[83] P. Gilkey,et al. Algebraic theory of affine curvature tensors , 2006 .
[84] Santiago de Compostela,et al. LEFT-INVARIANT LORENTZIAN METRICS ON 3-DIMENSIONAL LIE GROUPS , 1996 .
[85] Lieven Vanhecke,et al. Lorentz manifolds modelled on a Lorentz symmetric space , 1990 .
[86] P. Gilkey,et al. Pseudo-Riemannian Jacobi-Videv Manifolds , 2007, 0708.1096.
[87] S. I. Goldberg,et al. On conformally flat spaces with commuting curvature and Ricci transformations , 1972 .
[88] Giovanni Calvaruso,et al. Semi-symmetric Lorentzian metrics and three-dimensional curvature homogeneity of order one , 2009 .
[89] L. A. Cordero,et al. LATTICES AND PERIODIC GEODESICS IN PSEUDORIEMANNIAN 2-STEP NILPOTENT LIE GROUPS , 2008, 0802.3771.
[90] Marek A. Abramowicz,et al. Epicyclic Orbital Oscillations in Newton's and Einstein's Dynamics , 2002, gr-qc/0206063.
[91] Robert S. Strichartz,et al. Linear Algebra of Curvature Tensors and Their Covariant Derivatives , 1988, Canadian Journal of Mathematics.
[92] Andrzej Derdzinski,et al. Self-dual Kähler manifolds and Einstein manifolds of dimension four , 1983 .
[93] Takashi Oguro,et al. Four-Dimensional Almost Kähler Einstein and *-Einstein Manifolds , 1998 .
[94] Lieven Vanhecke,et al. Curvature invariants, differential operators and local homogeneity , 1996 .
[95] R. Castro,et al. Pseudo-Chern Classes and Opposite Chern Classes of Indefinite Almost Hermitian Manifolds , 1997 .
[96] Andreas Koutras,et al. A metric with no symmetries or invariants , 1996 .
[97] J. Kluson,et al. D-brane dynamics in a plane wave background , 2006 .
[98] Peter B. Gilkey,et al. Jacobi–Jacobi Commuting Models and Manifolds , 2009 .
[99] Sorin Dragomir,et al. Indefinite locally conformal Kähler manifolds , 2006 .
[100] A. Montesinos Amilibia. Degenerate Homogeneous Structures of Type $\S_1$ on Pseudo-Riemannian Manifolds , 2001 .
[101] R. Castro,et al. Pseudo-Riemannian manifolds with simple Jacobi operators , 2002 .
[102] P. Gilkey,et al. Projectively Osserman manifolds , 2007 .
[103] Neda Bokan,et al. Osserman pseudo-Riemannian manifolds of signature (2,2) , 2001, Journal of the Australian Mathematical Society.
[104] Yaron Oz,et al. Families of N = 2 strings , 2002 .
[105] A. Jevicki,et al. Large N field theory of N=2 strings and self-dual gravity , 1999 .
[106] P. Gilkey,et al. CONFORMALLY OSSERMAN MANIFOLDS AND CONFORMALLY COMPLEX SPACE FORMS , 2004 .
[107] Robert L. Bryant,et al. Bochner-Kahler metrics , 2000, math/0003099.
[108] Graham Hall,et al. Covariantly constant tensors and holonomy structure in general relativity , 1991 .
[109] Tan Zhang,et al. Manifolds with indefinite metrics whose skew-symmetric curvature operator has constant eigenvalues , 2000 .
[110] A. G. Walker. Canonical form for a Riemannian space with a parallel field of null planes , 1950 .
[111] Lieven Vanhecke,et al. Examples of curvature homogeneous Lorentz metrics , 1997 .
[112] Aaron Fialkow,et al. Hypersurfaces of A Space of Constant Curvature , 1938 .
[113] Bruce L. Reinhart,et al. The second fundamental form of a plane field , 1977 .
[114] Yuri Nikolayevsky,et al. Osserman manifolds of dimension 8 , 2003 .
[115] M. Brozos-Vazquez,et al. Stanilov-Tsankov-Videv Theory ? , 2007 .
[116] Udo Simon,et al. Introduction to the affine differential geometry of hypersurfaces , 1991 .
[117] Ramón Vázquez-Lorenzo,et al. Hermitian–Walker 4-manifolds , 2008 .
[118] Ramón Vázquez-Lorenzo,et al. Four-dimensional Osserman–Ivanov–Petrova metrics of neutral signature , 2007 .
[119] M Brozos-V. The Global Geometry of Riemannian Manifolds with Commuting Curvature Operators , 2006 .
[120] Tan Zhang,et al. ALGEBRAIC CURVATURE TENSORS FOR INDEFINITE METRICS WHOSE SKEW-SYMMETRIC CURVATURE OPERATOR HAS CONSTANT JORDAN NORMAL FORM , 2002 .
[121] Thomas Leistner. Screen bundles of Lorentzian manifolds and some generalisations of pp-waves , 2006 .
[122] Z. Afifi. Riemann extensions of affine connected spaces , 1954 .
[123] Pedro M. Gadea,et al. Reductive homogeneous pseudo-Riemannian manifolds , 1997 .
[124] Stefan Ivanov,et al. Riemannian Manifold in Which the Skew-Symmetric Curvature Operator has Pointwise Constant Eigenvalues , 1998 .
[125] Neda Bokan,et al. A note on the Osserman conjecture and isotropic covariant derivative of curvature , 1999 .
[126] S. I. Goldberg,et al. Integrability of almost Kaehler manifolds , 1969 .
[127] P. Gilkey,et al. Complete curvature homogeneous pseudo-Riemannian manifolds , 2004 .
[128] P. Gilkey,et al. The spectral geometry of the Weyl conformal tensor , 2003 .
[129] Peter Bueken,et al. Three‐dimensional Riemannian manifolds with constant principal Ricci curvatures ρ1=ρ2≠ρ3 , 1996 .
[130] Yasuo Matsushita,et al. A Spinor Approach to Walker Geometry , 2008 .
[131] Vivian De Smedt. Decomposition of the curvature tensor of hyper-Kähler manifolds , 1994 .
[132] Marek A. Abramowicz,et al. Epicyclic oscillations of fluid bodies - II. Strong gravity , 2005 .
[133] Edward J. Flaherty,et al. Hermitian and Kahlerian geometry in relativity , 1975 .
[134] Neda Bokan,et al. Geometric Structures as Determined by the Volume of Generalized Geodesic Balls , 2003 .
[135] V. Pravda,et al. All spacetimes with vanishing curvature invariants , 2002 .
[136] D. E. Blair,et al. Isotropic Kähler hyperbolic twistor spaces , 2004 .
[137] Charles P. Boyer,et al. COMPLEX GENERAL RELATIVITY, H AND HH SPACES: A SURVEY OF ONE APPROACH , 1979 .
[138] A. G. Walker. ON PARALLEL FIELDS OF PARTIALLY NULL VECTOR SPACES , 1949 .
[139] Andrzej Derdzinski,et al. The local structure of conformally symmetric manifolds , 2007, 0704.0596.
[140] E. Latini,et al. Making the hyper-Kähler structure of N=2 quantum string manifest , 2004 .
[141] Johann Davidov,et al. Self-dual Walker metrics with a two-step nilpotent Ricci operator , 2006 .
[142] Hiroyuki Kamada,et al. Neutral hyperkahler structures on primary Kodaira surfaces , 1999 .
[143] Peter Gilkey,et al. Curvature Tensors Whose Jacobi or Szabó Operator is Nilpotent on Null Vectors , 2002 .
[144] Peter B. Gilkey,et al. Jordan Szabo algebraic covariant derivative curvature tensors , 2002 .
[145] Peter B. Gilkey,et al. Pseudo Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial , 1998 .
[146] P. Gilkey,et al. Manifolds which are Ivanov-Petrova or k -Stanilov , 2003 .
[147] Y. Nikolayevsky. Riemannian manifolds whose curvature operator R(X, Y) has constant eigenvalues , 2004, Bulletin of the Australian Mathematical Society.
[148] Alfonso Romero,et al. Complex Einstein hypersurfaces of indefinite complex space forms , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[149] P. Gilkey,et al. Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds , 2004 .
[150] Hitoshi Takagi,et al. ON CURVATURE HOMOGENEITY OF RIEMANNIAN MANIFOLDS , 1974 .
[151] Oldřich Kowalski,et al. A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach , 2004 .
[152] Albert Marden,et al. Outer Circles: An Introduction to Hyperbolic 3-Manifolds , 2007 .
[153] Kyoko Honda,et al. Conformally Flat Semi-Riemannian Manifolds with Commuting Curvature and Ricci Operators , 2003 .
[154] Mirjana Djorić,et al. Three-Dimensional Lorentz Metrics and Curvature Homogeneity of Order One , 2000 .
[155] Kazuo Yamato,et al. Algebraic Riemann manifolds , 1989, Nagoya Mathematical Journal.
[156] P. Gilkey,et al. Jacobi--Tsankov manifolds which are not 2-step nilpotent , 2006 .
[157] Alfred Gray,et al. Curvature identities for Hermitian and almost Hermitian manifolds , 1976 .
[158] Eric Bergshoeff,et al. Self-dual supergravity theories in 2 + 2 dimensions , 1992, hep-th/9206101.
[159] Andrzej Derdzinski,et al. Non-Walker Self-Dual Neutral Einstein Four-Manifolds of Petrov Type III , 2008, 0809.0855.
[160] Novica Blažić,et al. Natural curvature operators of bounded spectrum , 2006 .
[161] Peter Bueken,et al. On curvature homogeneous three-dimensional Lorentzian manifolds , 1997 .
[162] Yasuo Matsushita,et al. Almost Kähler-Einstein Structures on 8-Dimensional Walker Manifolds , 2006 .
[163] P. Gilkey,et al. Completeness, Ricci blowup, the Osserman and the conformal Osserman condition for Walker signature (2,2) manifolds. , 2006 .
[164] Vestislav Apostolov,et al. Generalized Goldberg-Sachs theorems for pseudo-Riemannian four-manifolds , 1998 .
[165] Alfonso Romero,et al. The Gauss-Landau-Hall problem on Riemannian surfaces , 2004 .
[166] Peter B. Gilkey,et al. Geometrical Representations of Equiaffine Curvature Operators , 2008 .
[167] Igor Volovich,et al. Anti-Kählerian manifolds , 2000 .
[168] Gabriela P. Ovando,et al. Invariant pseudo Kaehler metrics in dimension four , 2004, math/0410232.
[169] Yuri Nikolayevsky,et al. Osserman Conjecture in dimension n ≠ 8, 16 , 2005 .
[170] Peter Giblin. Arthur Geoffrey Walker 1909–2001 , 2004 .
[171] Hans-Friedrich Münzner,et al. Cliffordalgebren und neue isoparametrische Hyperflächen , 1981 .
[172] Peter B. Gilkey. Bundles over projective spaces and algebraic curvature tensors , 2001 .
[173] Ramón Vázquez-Lorenzo,et al. NONSYMMETRIC OSSERMAN PSEUDO-RIEMANNIAN MANIFOLDS , 1998 .
[174] Alfred Gray,et al. The sixteen classes of almost Hermitian manifolds and their linear invariants , 1980 .
[175] Robert Osserman,et al. Curvature in the eighties , 1990 .
[176] Andrzej Derdzinski. Chapter 4 – Einstein Metrics in Dimension Four , 2000 .
[177] R. Castro,et al. Nonsymmetric Osserman indefinite Kähler manifolds , 1998 .
[178] P. Gilkey,et al. Curvature homogeneous signature (2,2) manifolds , 2004 .
[179] P. Gilkey,et al. Examples of signature (2, 2) manifolds with commuting curvature operators , 2007, 0708.2770.
[180] A. Martin,et al. Indefinite Einstein hypersurfaces with nilpotent shape operators , 1984 .
[181] Peter B. Gilkey,et al. Manifolds whose curvature operator has constant eigenvalues at the basepoint , 1994 .
[182] Akira Yamada,et al. Compact indefinite almost Kähler Einstein manifolds , 2008 .
[183] Vestislav Apostolov,et al. The Riemannian Goldberg–Sachs Theorem , 1997 .
[184] Giovanni Calvaruso. Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor , 2007 .
[185] Eduardo García-Río,et al. A note on the structure of algebraic curvature tensors , 2004 .
[186] Georges de Rham,et al. Sur la réductibilité d'un espace de Riemann , 1952 .
[187] P. Gilkey,et al. Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds , 2005 .
[188] Andrzej Derdzinski,et al. Connections with Skew-Symmetric Ricci Tensor on Surfaces , 2008, 0802.0163.
[189] Ramón Vázquez-Lorenzo,et al. Riemann Extensions of Torsion-Free Connections with Degenerate Ricci Tensor , 2010, Canadian Journal of Mathematics.
[190] Maria Ivanova,et al. FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH COMMUTING HIGHER ORDER JACOBI OPERATORS , 2007 .
[191] Lieven Vanhecke,et al. ISOPARAMETRIC GEODESIC SPHERES AND A CONJECTURE OF OSSERMAN CONCERNING THE JACOBI OPERATOR , 1995 .
[192] Kouei Sekigawa,et al. On some compact Einstein almost Kähler manifolds , 1987 .
[193] Lieven Vanhecke,et al. Four-dimensional curvature homogeneous spaces , 1992 .
[194] Giovanni Calvaruso,et al. Einstein-Like Lorentz Metrics and Three-Dimensional Curvature Homogeneity of Order One , 2010, Canadian Mathematical Bulletin.
[195] Yury. Nikolayevsky. Osserman manifolds and Clifford structures , 2003 .
[196] Eduardo García-Río,et al. Isotropic Kähler structures on Engel 4-manifolds , 2000 .
[197] Vicente Cortés,et al. A class of Osserman spaces , 2005 .
[198] Ramón Vázquez-Lorenzo,et al. LORENTZIAN 3-MANIFOLDS WITH COMMUTING CURVATURE OPERATORS , 2008 .
[199] A. Ikemakhen,et al. Sur l'holonomie des variétés pseudo-riemanniennes de signature (2, 2+n) , 1999 .
[200] Kouei Sekigawa,et al. On some 4-dimensional compact Einstein almost Kähler manifolds , 1985 .
[201] Martin A. Magid. SHAPE OPERATORS OF EINSTEIN HYPERSURFACES IN INDEFINITE SPACE FORMS , 1982 .
[202] Neda Bokan,et al. On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection , 1990 .
[203] J. Plebański,et al. The intrinsic spinorial structure of hyperheavens , 1976 .
[204] Yulian Tsankov,et al. A characterization of n-dimensional hypersurfaces in $R^{n+1}$ with commuting curvature operators , 2005 .
[205] Stana Nikcevic,et al. CURVATURE STRUCTURE OF SELF-DUAL 4-MANIFOLDS , 2008, 0808.2799.
[206] Yasuo Matsushita. Four-dimensional Walker metrics and symplectic structures , 2004 .
[207] S. A. Robertson,et al. Parallel framings and foliations on pseudoriemannian manifolds , 1974 .
[208] I. M. Singer,et al. Infinitesimally homogeneous spaces , 1960 .
[209] Ramón Vázquez-Lorenzo,et al. Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators , 2005 .
[210] Thomas Mohaupt,et al. 'Special geometry of Euclidean supersymmetry I: Vector multiplets' , 2004 .
[211] Andrzej Derdzinski,et al. Walker’s theorem without coordinates , 2006 .
[212] Giovanni Calvaruso,et al. Curvature homogeneous Lorentzian three-manifolds , 2009 .
[213] Peter B. Gilkey. Algebraic curvature tensors which are p-Osserman , 2001 .
[214] P. Gilkey,et al. The geometry of modified Riemannian extensions , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[215] Peter R. Law,et al. Neutral Einstein metrics in four dimensions , 1991 .
[216] Barbara Opozda. Affine Versions of Singer's Theorem on Locally Homogeneous Spaces , 1997 .
[217] Varun Sahni,et al. NEW VISTAS IN BRANEWORLD COSMOLOGY , 2002 .