A new wave concept iterative method in cylindrical coordinates for modeling of circular planar circuits

The purpose of this paper is the formulation of a Wave Concept Iterative Process (WCIP) for the analysis of the microwave planar circuits printed between two dielectric mediums in a cylindrical metallic box. This method is based on the transverse wave formulation. It also uses the Hankel Transform to express the integral relation in a spectral domain. An example of annular ring and circular patch loaded by annular ring has been studied and the obtained results validate the new approach. The good agreement between the simulation results and the experimental published data justifies the design procedure and validates the present analysis approach.

[1]  Neela Chattoraj,et al.  Optimization of efficiency and gain of magnetized circular ferrite microstrip antenna using genetic algorithm , 2007 .

[2]  J. A. Kong,et al.  Analysis of a circular microstrip disk antenna with a thick dielectric substrate , 1981 .

[3]  K. Michalski,et al.  Analysis of microstrip resonators of arbitrary shape , 1992 .

[4]  Asok De,et al.  Computation of resonant frequency of annular‐ring‐loaded circular patch using cavity model analysis , 2006 .

[5]  Henri Baudrand,et al.  Analysis of Shorted Ring Slots Frequency Selective Surfaces Using WCIP Method , 2008 .

[6]  C. Christodoulou,et al.  Extended cavity model analysis of stacked microstrip ring antennas , 1997 .

[7]  H. Baudrand,et al.  A new full-wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusions , 2005, IEEE Transactions on Microwave Theory and Techniques.

[8]  Tatsuo Itoh,et al.  Hankel transform domain analysis of open circular microstrip radiating structures , 1981 .

[9]  A. Derneryd,et al.  Analysis of the microstrip disk antenna element , 1979 .

[10]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[11]  J. R. James,et al.  Microstrip antennas and arrays. Part 1: Fundamental action and limitations , 1977 .

[12]  Ali Gharsallah,et al.  Analysis of interdigital capacitor and quasi‐lumped miniaturized filters using iterative method , 2002 .

[13]  R. D. Cook,et al.  Conformal microstrip patch circular array with orthogonal conformal stripline feed and all-angle transition , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[14]  James T. Aberle,et al.  Accurate and Versatile Solutions for ProbeFed Microstrip Patch Antennas and Arrays , 1991 .

[15]  S. Mao,et al.  Millimeter-Wave Integrated Circuits , 1968 .

[16]  Constantine A. Balanis,et al.  Edge-based FEM solution of scattering from inhomogeneous and anisotropic objects , 1994 .

[17]  Weng Cho Chew,et al.  Effects of Fringing Fields on the Capacitance of Circular Microstrip Disk , 1980 .

[18]  Shiva Jaiswal,et al.  Concentric annular ring microstrip antenna array , 2008 .

[19]  S. K. Barton,et al.  A circular patch antenna for radio LAN's , 1997 .

[20]  Ali Gharsallah,et al.  Analysis of microstrip spiral inductor by using iterative method , 2002 .

[21]  Y. T. Lo,et al.  Rigorous analysis of a circular patch antenna excited by a microstrip transmission line , 1989 .

[22]  Jawad Y. Siddiqui,et al.  New CAD model to calculate the resonant frequency of inverted microstrip circular patch antennas , 2002 .

[23]  V. Losada,et al.  Resonant modes of circular microstrip patches in multilayered substrates , 1999 .

[24]  Jacques Citerne,et al.  A rigorous analysis of novel microstrip circular patch antennas , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.