Ensemble Kalman filter with the unscented transform

Abstract A modification scheme to the ensemble Kalman filter (EnKF) is introduced based on the concept of the unscented transform [S. Julier, J. Uhlmann, H. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control. 45 (2000) 477–482; S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proc. IEEE 92 (2004) 401–422], which therefore will be called the ensemble unscented Kalman filter (EnUKF) in this work. When the error distribution of the analysis is symmetric (not necessarily Gaussian), it can be shown that, compared with the ordinary EnKF, the EnUKF has more accurate estimations of the ensemble mean and covariance of the background by examining the multidimensional Taylor series expansion term by term. This implies that, the EnUKF may have better performance in state estimation than the ordinary EnKF in the sense that the deviations from the true states are smaller. For verification, some numerical experiments are conducted on a 40-dimensional system due to Lorenz and Emanuel [E.N. Lorenz, K.A. Emanuel, Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci. 55 (1998) 399–414]. Simulation results support our argument.

[1]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[2]  Hendrickson Fr,et al.  WHICH IS BETTER , 1964 .

[3]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[4]  S. Julier,et al.  Which Is Better, an Ensemble of Positive–Negative Pairs or a Centered Spherical Simplex Ensemble? , 2004 .

[5]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[6]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[7]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[8]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[9]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[10]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[11]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[12]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[15]  F R HENDRICKSON,et al.  Which Is Better? , 2023, Advances in Cosmetic Surgery.

[16]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[17]  Ionel Michael Navon,et al.  Adaptive ensemble reduction and inflation , 2007 .

[18]  Henrik Madsen,et al.  On the construction of a reduced rank square-root Kalman filter for efficient uncertainty propagation , 2005, Future Gener. Comput. Syst..

[19]  Peter R. Oke,et al.  Ensemble member generation for sequential data assimilation , 2008 .

[20]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[21]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[22]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[23]  Keston W. Smith Cluster ensemble Kalman filter , 2007 .

[24]  Martin Ehrendorfer,et al.  Optimal Prediction of Forecast Error Covariances through Singular Vectors , 1997 .

[25]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[26]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[27]  Xin Li,et al.  An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation , 2008 .

[28]  Simon J. Julier,et al.  What's better, an ensemble of positive/negative pairs or a centered simplex ensemble? , 2003 .

[29]  James M. Murphy,et al.  The impact of ensemble forecasts on predictability , 1988 .

[30]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[31]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[32]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[33]  Jonathan D. Beezley,et al.  Morphing ensemble Kalman filters , 2007, ArXiv.

[34]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter : an alternative to ensemble square root filters , 2008 .

[35]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[36]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[37]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .