Discontinuous Galerkin method for the solution of a transport level-set problem

The subject of the paper is the numerical analysis of the transport level-set problem discretized by the discontinuous Galerkin method. Without the assumption that the first order nonstationary transport equation contains a reaction term, which is used in a standard literature, we prove error estimates in the L ∞ ( L 2 ) -norm in the case of the space semidiscretization method of lines and in the case of the space-time discontinuous Galerkin method in the L 2 ( L 2 ) -norm. Numerical experiments support the derived error estimates and show that they are not sharp in the case of the space-time discontinuous Galerkin method.

[1]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[2]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..

[3]  Miloslav Feistauer,et al.  Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems , 2004, J. Num. Math..

[4]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[5]  K. CHRYSAFINOS,et al.  Error Estimates for Discontinuous Galerkin Approximations of Implicit Parabolic Equations , 2006, SIAM J. Numer. Anal..

[6]  Endre Süli,et al.  DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .

[7]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Vít Dolejší,et al.  Residual based error estimates for the space–time discontinuous Galerkin method applied to the compressible flows , 2015 .

[10]  Konstantinos Chrysafinos,et al.  Error Estimates for the Discontinuous Galerkin Methods for Parabolic Equations , 2006, SIAM J. Numer. Anal..

[11]  Stanley Osher,et al.  Level set methods in image science , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[12]  Donald Estep,et al.  The discontinuous Galerkin method for semilinear parabolic problems , 1993 .

[13]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[14]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[15]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[16]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[17]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[18]  A. Ralston A first course in numerical analysis , 1965 .

[19]  Vít Dolejsí,et al.  Analysis of a BDF–DGFE scheme for nonlinear convection–diffusion problems , 2008, Numerische Mathematik.

[20]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  P. Smereka Spiral crystal growth , 2000 .

[23]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[24]  Jaroslava Hasnedlová Fluid-structure interaction of compressible flow , 2012 .

[25]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[26]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[27]  Miloslav Feistauer,et al.  Analysis of space–time discontinuous Galerkin method for nonlinear convection–diffusion problems , 2011, Numerische Mathematik.

[28]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[29]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[30]  Yang Xiang,et al.  A level set method for dislocation dynamics , 2003 .

[31]  Vít Dolejší,et al.  Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow , 2015 .

[32]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .

[33]  儀我 美一 Surface evolution equations : a level set approach , 2006 .

[34]  池田 勉 Maximum principle in finite element models for convection-diffusion phenomena , 1983 .

[35]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[36]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[37]  Petr Sváček,et al.  On approximation of non-Newtonian fluid flow by the finite element method , 2008 .

[38]  Vít Dolejsí Anisotropic hp-adaptive discontinuous Galerkin method for the numerical solution of time dependent PDEs , 2015, Appl. Math. Comput..

[39]  Miloslav Feistauer,et al.  Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems , 2007 .

[40]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[41]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[42]  Charalambos Makridakis,et al.  Galerkin time-stepping methods for nonlinear parabolic equations , 2004 .

[43]  J. V. D. Vegt,et al.  A space--time discontinuous Galerkin method for the time-dependent Oseen equations , 2008 .

[44]  A. J. Baker,et al.  Finite element computational fluid mechanics , 1983 .

[45]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[46]  J. V. D. Vegt,et al.  Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains , 2006 .

[47]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[48]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .