Algorithmic aspects of sums of Hermitian squares of noncommutative polynomials

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of Hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper several examples are given illustrating the results.

[1]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[2]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[3]  J. William Helton,et al.  Engineering Systems and Free Semi-Algebraic Geometry , 2009 .

[4]  Igor Klep,et al.  NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..

[5]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[6]  Mihai Putinar,et al.  Noncommutative sums of squares , 2005 .

[7]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[8]  Igor Klep,et al.  The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..

[9]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[10]  Scott McCullough Factorization of operator-valued polynomials in several non-commuting variables☆ , 2001 .

[11]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[12]  Igor Klep,et al.  Sums of Hermitian Squares and the BMV Conjecture , 2008 .

[13]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[14]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[15]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[16]  Igor Klep,et al.  Semidefinite programming and sums of hermitian squares of noncommutative polynomials , 2010 .

[17]  H. Stahl,et al.  Proof of the BMV conjecture , 2011, 1107.4875.

[18]  S. Sullivant,et al.  Emerging applications of algebraic geometry , 2009 .

[19]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[20]  Alex Rosenberg,et al.  -Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras , 1994 .

[21]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[22]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[23]  D. Bessis,et al.  Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics , 1975 .

[24]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[25]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[26]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[27]  B. Reznick Extremal PSD forms with few terms , 1978 .

[28]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[29]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[30]  J. Helton “Positive” noncommutative polynomials are sums of squares , 2002 .

[31]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[32]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[33]  S. Basu,et al.  Algorithmic and Quantitative Real Algebraic Geometry , 2003 .